
Journal of Renewable Energies 25 (2022) 5 – 25 - DOI: https://doi.org/10.54966/jreen.v25i1.1068 

5 

Journal of Renewable Energies 
Revue des Energies Renouvelables 

Journal home page: https://revue.cder.dz/index.php/rer 

Research Paper 

Improvement of the energy production of a photovoltaic-wind hybrid 

system using NF-PSO MPPT 

Paul Abena Malobé a, Philippe Djondiné a,b,*, Pascal Ntsama Eloundou a, Hervé Abena Ndongo a

a 
Department of Physics, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454 Ngaoundéré, Cameroon 

b 
Department of Physics, Higher Teacher Training College of Bertoua, The University of Ngaoundéré, Cameroon 

A R T I C L E I N F O A B S T R A C T

Article history: 

Received 29 September 2021 

Accepted 06 September 2022 

This manuscript gives a contribution to the optimization of a hybrid 

Photovoltaic-Wind Turbine system with a storage system. In order to 

capture the maximum power that can be produced by each source, while 

maintaining the rotor speed of the wind turbine at its maximum values 

according to wind variations, the Neuro-Fuzzy-Particle Swarm 

Optimization (NF-PSO) controller is proposed. The Neuro-Fuzzy 

method is used here because it allows an automatic generation of fuzzy 

rules, and the Particle Swarm Optimization to find an optimal gain 

allowing to readjust the dynamics of the fuzzy rules by reducing the 

power losses (oscillations). For the proper functioning of such a system, 

we have developed a fuzzy supervisor in order to have an optimal control 

of the system according to the variations of the requested load and the 

produced power by considering the storage system and the load 

shedding. The simulation results of the system confirmed the better 

performance of this method in terms of speed with a response time of 

0.2s on the wind side and 0.025s on the side photovoltaic, of efficiency 

with 99.87% on the photovoltaic side and 99.6% on the wind side, and 

above all in term of oscillation reduction with practically a negligible 

oscillation rate compared to the NF and the Cuckoo algorithm.

Keywords: 

Neuro-Fuzzy 

Particle Swarm Optimization 

Cuckoo 

Supervisor 

Oscillations 

* Corresponding author, E-mail address: pdjondine@yahoo.fr

ISSN: 1112-2242  /  EISSN: 2716-8247 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Based on a work at http://revue.cder.dz. 



     Journal of Renewable Energies 25 (2022) 5 – 25 

6 

1. Introduction

The use of energy produced by renewable sources is a promising energy option that meets the 

growing demand for energy in the world [1]. However, these sources have the disadvantage of 

being dependent on weather conditions. In order to reduce the fluctuations in production caused 

by the random nature of these resources and to meet the load requirements, the solution to be 

retained is the assembly of different sources of electrical energy production [1-3]. In addition, 

the periods of the year with low insolation correspond to those with a better wind potential. It 

is therefore consistent that a complementarity between wind and solar energy is desirable and 

that the coupling of these two energy sources is the safest and least expensive solution for 

autonomous electrification systems [2]. The interest of such a coupling is to have more energy 

and a continuity of service, but, as for any hybrid PV-E system, the risk remains to have too 

much energy at some times and not enough at others. Therefore, it is necessary to use a storage 

system to store the excess energy when it exists and to release it during periods of insufficient 

supply [4, 5]. In order to be used in a wide range of applications and to satisfy the economic 

constraints, the conversion chain of these energies must be robust and reliable but it must also 

present a high performance at low cost. For this, it is necessary to extract the maximum power 

from renewable sources while taking into account the management of the storage system, by 

proposing a supervisor, which would have the advantage of extending the life of the devices. 

This has motivated several researchers to focus on the development of hybrid MPPT methods 

and intelligent supervisors such as: [6,7] who used a fuzzy logic (FL) supervisor for hybrid 

system management; [8] worked on a hybrid MPPT by combining Perturb and Observe and 

Artificial Neural Networks (P&O-RNA) methods; [9] worked on a hybrid system using a 

Neuro-Fuzzy (NF) MPPT algorithm for PV and for wind the Radial Basis Function Network-

Sliding Mode (RBFNSM) algorithm; [10] worked on the Genetic Algorithm (GA) and PSO; 

[11] used three control strategies for hybrid system management, and in [12-14] improved 

MPPT algorithms are presented. For all these MPPT controls developed in the literature, the 

output power oscillates hence the power losses, in addition to that these methods do not manage 

to work well in a PV generator as well as in a wind generator while keeping the speed of rotation 

of the latter in its maximum values according to the wind variations. 

The objective of this manuscript is to optimize the energy efficiency of a PV-WT hybrid system 

by combining RNs while equipping it with a PSO compensator in order to readjust the fuzzy 

rule dynamics to accelerate the convergence towards the desired performance, and to keep the 

rotor speed at its optimal values according to the wind variations. 

This paper includes the following parts: the second section of the paper will be dedicated to the 
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modeling of our study system, namely the PV model, the wind turbine model, the Permanent 

magnet synchronous generator (PMSG) model, the battery model and the DC/DC boost 

converter model. A third section is reserved for the presentation of the proposed MPPT method 

and the energy management algorithm. The different simulations done and the discussion of 

the results found will be the subject of the fourth section. In the fifth section a conclusion is 

presented. 

2. Study System

In this section we present our studied system which consists of a Photovoltaic (PV) panel, a 

Wind Turbine (WT), a Permanent Magnet Synchronous Generator (PMSG), a storage battery, 

a supervisor, a variable load and two static converters figure1. 

Fig 1. Structure of the studied system 

2.1 Photovoltaic panel model 

The scientific community offers several models to model a photovoltaic panel. The most 

widely used model, for its simplicity and accuracy, is the one with one diode [15] (Figure 2). 

Fig 2. Single diode model of a PV cell 

In this model, the photovoltaic cell is represented by a current source which generates a current 
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Iph proportional to the solar radiation. The shunt resistance Rsh characterizes the leakage 

current at the junction and the resistance Rs represents the various contact and connection 

resistances. The current supplied by the cell Ipv is modeled by the following equation [16]: 

𝐼𝑝𝑣 = 𝑁𝑝𝐼𝑝ℎ − 𝑁𝑝𝐼0 [exp (
𝑞𝑉𝑝𝑣

𝑁𝑠𝑛𝐾𝑇
) − 1] (1) 

The inverse saturation current Io is: 

𝐼𝑜 = 𝐼𝑜𝑟 (
𝑇

𝑇𝑟
)
3

exp (
𝑞𝐸𝑔

𝑛𝐾𝑇
(
1

𝑇𝑟
−

1

𝑇
)) (2) 

The inverse saturation current at Tr is: 

𝐼𝑜𝑟 =
𝐼𝑠𝑐𝑟

𝑒𝑥𝑝(
𝑞𝑉𝑜𝑐
𝑛𝐾𝑇𝑁𝑠

)−1
(3) 

𝐼𝑝ℎ = [𝐼𝑠𝑐𝑟 + (𝐾𝑖(𝑇 − 𝑇𝑟))]
𝐸

100
(4) 

PV module power can therefore be obtained as follows: 

𝑃𝑝𝑣 = 𝑉𝑝𝑣𝐼𝑝𝑣 = 𝑁𝑝𝑉𝑝𝑣𝐼𝑝ℎ − 𝑉𝑝𝑣𝑁𝑝𝐼0 [exp (
𝑞𝑉𝑝𝑣

𝑁𝑠𝑛𝐾𝑇
) − 1] (5) 

The electrical characteristics under standard conditions (G= 1000W/m2, and T=25C°) of the 

photovoltaic module used for the simulations are presented in Table 1. Figure 3 shows the 

typical current/voltage and power/voltage curves for the photovoltaic panel. 

Table 1. Parameters of PV 

Parameters Values 

Maximum Power 218.871 W 

Optimum operating voltage 29.3 V 

Optimum operating current 7.47 A 

Open circuit voltage 36.6 V 

Schort-circuit current 7.97 A 
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Fig 3. Current/voltage (a) and power/voltage (b) characteristics of the photovoltaic panel 

according to irradiation variations 

2.2 Wind turbine model 

The aerodynamic power collected by a wind turbine is written in the following form [17]: 

Paero =
1

2
Cp(λ, β)ρSV

3       (6)

With: 

ρ: the air density (kg/𝑚3) ; V: wind speed (m / s); S: the useful surface crossed by the wind

given by S= πR2; R: the radius of the blades; 𝐶𝑝(𝜆, 𝛽) : Power coefficient.

The power coefficient Cp (λ, β) i given by [18]: 

Cp(λ, β) = 0.5(
98

λi
− 0.4β − 5)exp (−16/λi)  (7) 

1

λi
=

1

λ+0.08β
−
0.035

β3+1
(8) 

λ =
Rωm

V
         (9)

The aerodynamic torque appearing at the level of the turbine is therefore a function of this 

power: 

Γaero =
Paero

ωm
=

1

2ωm
Cp(λ, β)ρπR

2V3 (10) 

(a) 

(b) 
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Where: 𝜔𝑚 is the rotor speed of a wind turbine. 

Table 2 recapitulates the parameters of the wind turbine used for the numerical simulations. 

Table 2. Wind turbine parameters 

For each wind speed, there is a maximum power of the wind turbine which is obtained according 

to the rotor speed  figure 4. 

Fig 4. Mechanical power/speed characteristic 

2.3 Permanent magnet synchronous generator model 

For applications autonomous of wind energy transformation, the PMSG are used the most 

considering their reliabilities and robustnesses. We used the referential d-q transform of park 

for modeling. The voltage of axis d and q is obtained by the system of equation (11) [17]. 

{

vds = Rsids + Ld
dids

dt
− Lqωriqs 

vqs = Rs. iqs + Lq
diqs

dt
+ Ldωrids +ωrΨr (11) 

The equation (12) gives the electromagnetic torque of PMSG. 

Parameters Values 

Nominal mechanical 

output power 

  1300W 

 pitch angle     0o 

air density 1.22 kg/m3 

Blade radius  0.68 m 

Wind speed   9m/s 
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гe = 1.5p[(Ld − Lq)iqsids −Ψqridr −Ψriqs]    (12) 

With: 𝑖𝑑𝑠 and vdsthe current and voltage of the axis d; 𝑖𝑞𝑠  and vqs the current and voltages of 

the axis q; ω𝑟  the angular frequency of generator; 𝐿𝑞, and 𝐿𝑑 are the inductances of the 

generator; Ψ𝑟 the permanent flux; Rs the stator resistance and P is the Pole pairs.  

Table 3 recapitulates the parameters of the PMSG used for the numerical simulations. 

Table 3. PMSG parameters 

Parameters Values 

Rated power 1300W 

Stator phase resistance 0.425 Ω 

  

Machine inertia 0.01197 kg.m2 

Armature inductance 0.0082 H 

Friction factor 0.001189N.m/s 

 Pole pairs 5 

2.4 Battery model 

We used the equivalent series model to represent the battery, Figure 5. It is composed of an 

ideal voltage  𝑈𝑜𝑐 a series resistance 𝑅𝑏𝑎𝑡 and the battery voltage which is given by: 

𝑉𝑏𝑎𝑡 = 𝑈𝑜𝑐 − 𝑅𝑏𝑎𝑡. 𝐼𝑏𝑎𝑡       (13) 

 

Fig 5. Equivalent circuit model of the battery 

In order to avoid degradation of the battery and prolong its life, their state of charge must be 

maintained within a certain interval defined as follows 

𝑆𝑂𝐶𝑚𝑖𝑛(𝑡) ≤ 𝑆𝑂𝐶 (𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥(𝑡)      (14) 

The expression of the evolution of the State of Charge (SOC) of the battery as a function of its 

current is given by: 

𝑹𝒃𝒂𝒕 

𝑼𝒐𝒄 

𝑰𝒃𝒂𝒕 

𝑽𝒃𝒂𝒕 
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 𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) + ∫ 𝐼𝑏𝑎𝑡
𝑡

𝑡−1
𝑑𝑡 (15) 

Table 4 recapitulates the parameters of the battery used for the numerical simulations. 

Table 4. Parameters of battery 

Parameters Values 

Nominal capacity 100 Ah 

Nominal voltage 48 V 

Internal resistance 0.08 Ω 

2.5 DC/DC boost Converter model 

Static converters are essential parts of the variable speed wind power conversion system. In this 

document, a boost converter is used here. During operation of the chopper, the switch is closed 

with a closing time equal to (D.T), and it is opened in an opening time ((1-D) .T), with: T is the 

switching period and D the duty cycle of the switch (D [0,1]). 

 𝑉𝑜𝑢𝑡 = 
  𝑉𝑖𝑛

1−𝐷
(16) 

Where: 𝑉𝑜𝑢𝑡: Output voltage;  𝑉𝑖𝑛 : input voltage; D: duty cycle. 

 L

C

T

D

Vin VoutR

Fig 6. Boost converter 

The converter parameters are given in table 5. 

Table 5. Converter parameters 

Parameters Values 

Load 30 Ω 

Inductor 3 mH 

Capacitor 100µF 

The authors in [18] have shown that the output voltage of the chopper is proportional to the 

speed of the machine. This means that if we act on this voltage, we also act on the speed of the 

machine. Therefore, if a MPPT method is good at ensuring the maximum extraction of power 

from the wind turbine, it will always be able to keep the speed of the machine at its optimal 

values. 
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3. Methods used

In this section, we present the MPPT method used and the energy management method. 

3.1 MPPT Method 

The NF method developed here is based on the ANFIS (Adaptive Neuro-Fuzzy Inference 

System) model with the difference that our membership functions used here are triangular and 

not Gaussian. ANFIS implements a Takagi Sugeno type fuzzy inference system and has 

architecture composed of five layers as shown in Figure 7 [19]. Our method contains two inputs: 

the error (E) and the variation of the error (ΔE), and a single output which is the variation of 

the duty cycle (D). 

Fig 7. Architecture of ANFIS used. 

The nodes of the input layer, whose number is equal to the number of linguistic terms (calculate 

the membership degrees of the input values by equation 17), forward the numerical data to the 

nodes of the second layer representing the fuzzy subsets that calculate the membership function 

value (equation 19). The nodes in the third layer perform the fuzzy operations (equation 20). 

The nodes of the fourth layer perform the operation of calculating the weighted consequence of 

the rule (equation 21) [19]. Finally the fifth layer (equation 22) performs the defuzzification 

operation. 

𝑜𝑘𝑥𝑖
1 = 𝜇𝑥𝑖(𝐸) ,    𝑘𝑥𝑖=1, 2, 3, 4, 5;         𝑥𝑖  =𝑀𝑁 , 𝐿𝑁 , 𝑍 , 𝐿𝑃 , 𝑀𝑃  

𝑜𝑘𝑦𝑖
1 = 𝜇𝑦𝑖(𝛥𝐸)   𝑘𝑦𝑖=1,2, 3, 4, 5;           𝑦𝑖 =𝑀𝑁 , 𝐿𝑁 , 𝑍 , 𝐿𝑃 , 𝑀𝑃  

𝐸 =
𝐼(𝑘)−𝐼(𝑘−1)

𝑉(𝑘)−𝑉(𝑘−1)

𝛥𝐸 = 𝐸(𝑘) − 𝐸(𝑘 − 1)  

Where E and 𝛥𝐸 are respectively the inputs of nodes 𝑘𝑥𝑖   and 𝑘𝑦𝑖 of layer1. 𝑥𝑖 and 𝑦𝑖 are the

(18) 

(17) 
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linguistic terms associated with membership functions 𝜇𝑥𝑖 and 𝜇𝑦𝑖. In our case the linguistic 

terms used are Most Negative (MN), Least Negative (LN), Zero (Z), Least Positive LP), and 

Most Positive (MP) 

𝑤𝑘
 = 𝜇𝐴𝑖(𝐸). 𝜇𝐵𝑖(𝛥𝐸)       (19)

Where 𝑤𝑘
   is the output of layer 2.

𝑣𝑘 =
𝑤𝑘

𝑤1+𝑤2+𝑤3+⋯𝑤25
(20) 

The membership functions obtained for each input are given below: 

Fig 8. Membership functions of the inputs obtained 

𝑜𝑘
4 = 𝑣𝑘. 𝑓𝑘 = 𝑣𝑘(𝑎𝑘. 𝐸 + 𝑏𝑘. 𝛥𝐸 +𝑚𝑘)     (21)

Where 𝑣𝑘 is the output of layer 3, and (𝑎𝑘, 𝑏𝑘, 𝑚𝑘) is the set of output parameters of rule k. 

The last layer is obtained by: 

𝑜𝑘
5 = ∑ 𝑜𝑘

4. 𝑣𝑘
4
𝑘=1         (22)

Fig 9. Training of the neuro-fuzzy network. 
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3.2 Determination of the compensation gain by the PSO 

Particle swarm optimization (PSO) is an evolutionary computation technique developed 

by Eberhart and Kennedy (1995). This algorithm is inspired from the social behavior of 

animals, such as the flocking of birds and the schooling of fish, and the swarm theory. It 

has been proven to be efficient in solving optimization problem especially for 

non-linearity and non-differentiability, multiple optimum and high dimensionality [20-23]. The 

many applications of this algorithm in several fields and particularly in the field of technology 

shows its superiority compared with other stochastic methods such as the genetic algorithm, 

biogeography, and the colony of the ants [23]. It is an iterative algorithm. À each stage of 

calculation which the values of the individuals are compared according to the function 

objectifies to place the new guides then are select. During its execution, the algorithm passes 

by the stages grouped in the following flow chart: 

The position and velocity of each particle are updated by applying the following equations: 

𝑉𝑖+1 = 𝑤. 𝑉𝑖 + 𝑐1. 𝑟1. (𝑥𝑖𝑝 − 𝑥𝑖) + 𝑐2. 𝑟2. (𝑥𝑔 − 𝑥𝑖)    (23) 

𝑥𝑖+1 = 𝑥𝑖 + 𝑉𝑖+1        (24) 

With:  

𝑤 = 𝑤𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟. (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)/𝑖𝑡𝑒𝑟_𝑚𝑎𝑥    (25) 

𝑥𝑖𝑝 and  𝑥𝑔 respectively the best position of a particle i since the first iteration, and the best 

overall position of the swarm; 

𝑐1  and  𝑐2 are acceleration coefficients with a typical value of 2; 

𝑟1  and  𝑟2 are random numbers within [0, 1]; 

𝑤 is the coefficient of the inertia weight, iter is the present iteration number, max and min 

subtitles stand for maximum and minimum, respectively. In addition, “iter_max” have been 

selected such that the best fitness function with a suitable convergence capability can be 

achieved. This value is 1000 in the simulation. Supporting the above mentioned PSO technique, 

the procedure of the PSO can be described by the flowchart shown in Figure 10. 
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Fig 10. Flowchart of PSO algorithm 

After realizing all the components of our method, we obtain the structure given in figure 11. 

Fig 

Fig 11. Design process of the hybrid method of MPPT developed 
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3.3 Energy management 

The role of the supervisor is to optimize the use of the energy produced and that of the battery. 

If the renewable sources do not provide enough power and the battery capacity is sufficient, the 

battery will provide the missing power. If the hybrid power exceeds the load demand, the excess 

will be stored in the battery and if the battery is full, the excess will be dissipated in a load 

shedding system (in this case a resistor). Thus, the battery is not the main supplier, its 

charge/discharge rate is reduced, and therefore the battery life is extended. 

The inputs of our supervisor are the state of charge of the battery (SOC), and the difference 

between the power supplied and the power of the load (delta_P). The outputs are the commands 

of switches K1 and K2. 

The fuzzy variables used to realize our fuzzy supervisor are: 

Negative (N), significantly Zero (Z) and Positive (P) for Delta_p 

Empty battery (Emin), medium full battery (E) and full battery (Emax) for SOC 

On and Off for switches K1 and K2. 

The membership functions corresponding to each fuzzy set are given in Figure12:

Fig 12. Membership functions 

The different fuzzy rules used are given in the tables below: 
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Table 6. Fuzzy rules for K1 

                  K1                             SOC 

   Emin            E          Emax 

 

Delta_P 

     N on on on 

     Z  on on on 

     P on on off 

Table 7. Fuzzy rules for K2 

                  K2                             SOC 

   Emin            E          Emax 

 

Delta_P 

     N off off off 

     Z  off off off 

     P off off on 

For the implementation of all the fuzzy rules used here, we used Mamdani type fuzzy rules. 

Flow chart of the algorithm of energy management is given below  

 

Fig 13. flowchart of the algorithm of energy management 
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4. Results and discussions 

In order to test the performance of the NF-PSO MPPT controller, we performed several 

simulation cases. To verify the theoretical study on the behavior of the MPPT controller a series 

of simulation was performed with Matlab/Simulink software and a comparison was made with 

MPPT, NF and Cuckoo algorithm controllers.  

The power demand, the wind speed and the sunshine are variable to test the operation of the 

proposed controllers in various climatic conditions 

 

 

 

 

 

 

 

 

 

 

 

Fig 14. Irradiance (a), wind speed (b) and power demand (c). 

 

(a) (b) 

(c) 
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Fig 15. Rotor speed 

In figure 15, we notice that the results obtained with our method are favorable compared to the 

compared methods, with a presence of undulations which prevents to keep the rotor speed at its 

maximum values. 

 

Fig 16. Wind power 
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Fig 17. Photovoltaic panel power 

Figures 16 and 17 show the results obtained using our NF-PSO approach and compared with 

the NF and Cuckoo. From these curves, we can see that the NF-PSO controller has contributed 

in a more efficient way to the extraction of the maximum power compared to the MPPT 

strategies based on the NF and Cuckoo approach because it has a better rise time, and response 

hence its fast convergence compared to the compared approaches (see comparison table below) 

and it is very simple to implement. Thus, we can say that our controller has contributed to the 

improvement of the production of a PV-WT system. 

Table 8. Comparison of the results 

Algorithm Tracking 

efficiency 

(%) 

 

 Response 

time (s) 

 

 

Steady 

state 

oscillation 

(%/W) 

Rising time(s) 

 

 

 

 WT    PV WT    PV  WT         PV 

     

NF-PSO 99.6 99.87 0.2 0.025 No 0.1014 0.00140 

        

NF 98.1 99.78 0.5 0.06 Less 0.1026 0.00142 

CUCKOO 97.5 99.74 0.51 0.07 Less 0.1068     0.02 

After maximizing the production of both sources, we need to ensure energy management so 

that there is continuity of service.  

We assume that the state of charge of the battery is 90% (Full) to be able to check all the cases 

of operation. 
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Fig 18. Power of the two sources, power of the battery and power demand 

 

Fig 19. State of charge of battery 

 

Fig 20. Switch K1 and K2 



                                  Journal of Renewable Energies 25 (2022) 5 – 25 

23 

In the time interval t= [0-6], the two renewable sources do not manage to satisfy the demand, 

so the battery intervenes to ensure the demand, hence the presence of a positive power (K1=1). 

In the time interval t= [6-8], the battery is charged and reaches its maximum state of charge, 

because there is an excess of energy: the two sources completely satisfy the demand. In the 

interval t= [8-10], the battery is charged, so to avoid its deterioration, the switch K2 turns on 

(K2=1) and the excess power is transmitted to the resistor. 

5. Conclusion 

In order to improve the efficiency of PV-wind systems, especially their energy production, we 

have developed an intelligent and simple method based on NF and PSO.  This strategy allows 

optimizing at each moment and for both sources the power output. Thus we started with the 

presentation of the system used. Then we presented the NF-PSO controller. The simulation 

results show the advantage of the adopted strategy because it is faster with a response time of 

0.2s on the wind side and 0.025s on the photovoltaic side, more efficient with 99.87% on the 

photovoltaic side and 99.6% on the wind side, and above all it allows to keep the rotation speed 

of the machine always at its maximum values, it also allows the reduction of oscillation with 

practically a negligible rate of oscillation compared to that of the NF and the Cuckoo algorithm. 

To have an optimal behavior of the installation from a power flow point of view, we developed 

a fuzzy supervisor. This allows an efficient and rational management of the energy to satisfy 

the needs of the energy consumer. We plan in the near future to test our approach by taking into 

account the variation of the temperature on the PV side and the fast variation of wind on the 

wind turbine side; we also will apply our method in the case of partial shading and perform a 

comparative study by optimizing the Neuro-Fuzzy with two other iterative algorithms among 

which: Grey Wolf Optimization (NF-GWO), Whale Optimization Algorithm (NF-WOA) and 

compare with Particle Swarm Optimization (NF-PSO). 
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