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 This work, based on the data obtained from the literature reported by (Varela 

et al., 2018), aims to use the artificial neural network approach to predict the 

heat and mass transfer in a dehumidifier system, using lithium chloride as a 

liquid desiccant. A neural network model was developed in MATLAB 

environment based on multilayer perceptron that included an input, hidden, 

and output layer. The network input parameters are air velocity, air 

temperature, air humidity ratio, liquid desiccant temperature, liquid flow rate, 

and liquid desiccant concentration. The network output includes two variables 

which are the heat transfer coefficient (Kh) and mass transfer coefficient (Km). 

The performance of the ANN model was evaluated using the statistical 

parameters between the prediction results and experimental values. The 

performance regression yields R2 and MSE values of 0.9344 and 9.0032, 

respectively, for the test data set of heat transfer coefficient (Kh). Moreover, 

for the mass transfer coefficient (Km), the regression parameter R2 and MSE 

values for the ANN tests were found to be 0.9657 and 2.0414, respectively. 

In addition, air velocity, air temperature, solution mass flow rate, and solution 

concentration are the most influential parameters on the heat and mass transfer 

between the air and liquid desiccant. 
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1. Introduction  

The desiccant liquid dehumidification technique is a tool for controlling the humidity and 

temperature in a hot and humid climate. The research on dehumidifier systems using liquid 

desiccant has concentrated on two aspects. One is the experimental part, to test and enhance the 

sorption dehumidification of air with different solutions as liquid desiccant materials (Fumo & 

Goswami, 2002), (Patnaik, Lenz, & Löf, 1990)  and (Kumar & Asati, 2016).  

The other aspect is theoretical research that is introduced to understand the different processes 

in dehumidifier systems (Salarian, Fatahian, & Fatahian, 2020). Heat and mass transfer were 

the main processes that should be studied to characterize the liquid desiccation dehumidification 

system.  

Onda et al.,1968, established an empirical correlation of the mass transfer coefficients for gas 

absorption and desorption that applied to the vaporization of water and gas absorption by 

organic solvents (Onda, Takeuchi, & Okumoto, 1968). 

Zhang et al.,2010,  developed an empirical correlation to predict the mass transfer coefficient 

of a cross-flow liquid desiccant dehumidifier system using lithium chloride as the liquid 

desiccant(Zhang, Hihara, Matsuoka, & Dang, 2010). 

Su et al.,2019, established a novel correlation for a cross-flow dehumidifier with structured 

packing based on the experimental operating conditions (Su, Li, Sun, & Zhang, 2019). 

Yin and Zhang.,2008,  obtained a new method based on the number of NTU-Le transfer units 

to determine the coupled heat and mass transfer coefficients between air and the liquid desiccant 

(Yin & Zhang, 2008). 

Elsayed et al.,1993,  developed a finite difference model to calculate the effectiveness of heat 

and mass transfer in dehumidification and regeneration with numerous parameters such as 

column heights, air, and solution flow rates, inlet air and solution temperatures, solution 

concentrations, and calcium chloride as the liquid desiccant (Elsayed, Gari, & Radhwan, 1993). 

Varela et al.,2018,  established an empirical correlation between the mass transfer coefficients 

for an adiabatic dehumidifier and regeneration made of a structure-packed bed by using lithium 

chloride as a solution desiccant (Varela et al., 2018). 

However, in classical methods, the numerical models require a large number of parameters to 

define the system. Geometric, physical, and thermodynamic properties may not be readily 

available, and their predictions may often not be precise enough (Zendehboudi, Tatar, & Li, 

2017). Artificial neural networks are optimization methods used to predict the desired output 

of a system when sufficient experimental data is provided (Frey et al., 2014). The main 
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advantages of artificial neural networks are their speed, simplicity, and ability to model a 

multivariate problem to solve complex relationships between variables, (Mellit & Kalogirou, 

2008) and (Bouzeffour, Khelidj, Yahi, Belkacemi, & Taane, 2021). 

The main focus of the present study is based on the experimental data obtained from the 

literature reported by (Varela et al., 2018) for predicting the heat and mass transfer coefficient 

of an adiabatic liquid desiccant dehumidifier system. To achieve this, multilayer feed-forward 

neural networks, tangent sigmoid TANSIG transfer function, and a back-propagation algorithm 

were used to build the method of the neural network. The mathematical validation criteria 

between the predicted and experimental results were also examined. 

2. Artificial neural network method  

An artificial neural network called also a "neural network" is a mathematical or computational 

model whose design is inspired by a working method of the human nervous system. The 

artificial neural network (ANN) is more powerful than the parametric approaches and can 

identify, predict and solve complicated phenomena, and has been used to simulate various 

topics including mathematics, medicine, economy, meteorology, and engineering sciences 

(Kalogirou, 2000). 

A neural network consists of an input, a hidden, and an output layer. Fig.1 illustrates the 

architecture of a typical neuron in a neural network. This configuration is known as a multilayer 

perceptron. It consists of single or multiple hidden layers, which are responsible for the 

performance of the network output.  

 

Fig 1. The architecture of a typical neuron in a neural network 

The neural network training process is based on modifying connected weights and biases using 

the learning method. The weighted sum of inputs goes through a non-linear function to produce 

the neuron output. 

The neural network model is described by the following equation: 
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Where; 

x1, x2, ..., xj: the input signals; Wi,11, Wi,21, ..., Wi, jk: the respective synaptic weights of the 

input neuron k; Wo,11, Wo,21, ..., Wo,sk:  the synaptic weights of the output neuron s; 

b1k and b2s: is the biases or threshold; 

In this study, the network output of the heat transfer coefficient Kh and mass transfer coefficient 

Km is expressed as follows: 
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Where ; 

Wi, Wo, b1k, and b2s are weights and biases. 

The ANN model was developed for the adiabatic liquid desiccant system with six parameters 

in the input layer and three neurons in the hidden layer.  The input variables are air velocity 

(Uai), air temperature (Tai), air humidity ratio (Wai), the liquid solution flow rate (ms), the liquid 

solution temperature (Ts), and the concentration of the liquid desiccant (Xs). The output 

parameters in the neural networks model are the heat and mass transfer coefficients Kh and Km. 

The architecture of the network for this current study is shown in Fig. 2. 

 

Fig 2. Typical feed-forward ANN structure 

The range of the measured values at the inlet and outlet of the adiabatic liquid desiccant system 

are listed in Table 1. 
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Table 1. the measured values at the inlet and outlet of the adiabatic liquid desiccant 

system (Varela et al., 2018) 

Working parameters   
Minimum and Maximum 
ranges 

Units

Air velocity (Uai) 0.44 – 2.38 m/s 
Air temperature (Tai)  33.92 – 34.06 °C
Air humidity ration (Wai)  19.4 – 19.6 g/kg
Solution mass flow rate  (msi) 38.8 –187.98 g/s
Solution temperature (Tsi)  16.9 – 17.12 g/kg
Solution concentration (Xsi) 29.18 – 30.19 %
Heat transfer coefficient (Kh) 11.34 – 42.4 W/m2.K
Mass transfer coefficient (Km) 10.98 – 29.74 g/m2.s

Moreover, to enhance the learning process of the network model, the inputs and the outputs 

variables were normalized between -1 and 1 (Wang, Zhao, & Zhang, 2006), using the following 

equation: 

 
   min

max min min
max min

nor ival val
val y y y

val val


  


     (4) 

Where; 

valnor, represent the normalized value, vali represents the actual input or output. 

ymin, ymax, are -1 and 1, respectively, valmin, and valmax, represent the minimum and the 

maximum experimental values of the inputs or outputs. The inlet and outlet experimental values 

are also listed in Table 1. 

3. Results and discussion 

To develop the artificial neural network for the adiabatic liquid desiccant system, the available 

data set from the experimental work of (Varela et al., 2018).  The data set consisted of 38 input-

output pairs. While 70 % of the data set was randomly assigned as the training set, the remaining 

30% was employed for testing the network. The developed neuronal model uses the MATLAB 

Neural Network toolbox to search for a better configuration network applying multilayer feed-

forward neural networks, the hyperbolical tangential (TANSIG) transfer function in the hidden 

layer, and the backpropagation learning algorithm. 

In this study, several parameters are selected to develop the neural network training such as the 

number of neurons in the input, hidden and output, the structure of the network, the transfer 

function between the input and hidden layer, and the learning algorithm. Figure 4 shows the 

steps involved in the training of the artificial neural network used for predicting the 

dehumidifier performance.  
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The prediction performances of the networks were evaluated using Mean-Square Error (MES), 

Root Mean-Square Error (RMES), statistical coefficient of multiple determinations (R), and the 

Mean Relative Error (MRE), which were calculated using the following expressions:  
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Where : 

Qj,exp is the real value (experimental), 

Qj, ANN is the predicted value (output network),  

N is the data number. 

3.1 Statistical parameters 

The statistical parameters MSE and R obtained by backpropagation algorithms TRAINLM of 

the ANN model during the training and testing steps concerning the heat and mass transfer 

coefficient of the adiabatic liquid desiccant system are listed in Table.2. 

Table 2. ANN performance results for heat and mass transfer coefficient 

 
Heat transfer coefficient

(Kh) 
Mass transfer coefficient 

(Km) 
Network structure 6-3-1 6-3-1 
ANN Performance Training Test Training Test 
MSE 0.0287 9.0032 0,0012 2,0414 
RMSE 0.1694 3.0005 0.0346 1.4287 
R2 0.9997 0.9344 0.9999 0.9657 
MRE (%) 0.4110 8.8946 0.1026 6.1093 

The MSE and Rଶ values are excellent numerical criteria for evaluating the performance of a 

prediction tool. A well-trained ANN model produces small MSE and higher R values. In the 

current study, the heat transfer coefficient results of the adiabatic liquid desiccant system 

obtained from a neural network with a 6-3-1 structure provided a reasonable degree of accuracy 

with MSE= 0.0287 and 9.0032 for the training and the test respectively. The ANN prediction 

and the experimental values yielded a statistical coefficient of multiple determinations (R) in 
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the range of 0.9997 and the mean relative error (MRE) in the range of 0.1410 % for the training 

step, and for the ANN test the (R) obtained was 0.9346 and the (MRE) was 8.8946%, as shown 

in Table2. Also, the prediction values of the mass transfer coefficient yielded the (R-values) of 

0.9999 and 0.6957 for the training and test respectively, and the mean relative error (MRE) in 

the range of 0.1026 and 6.1093% for the training and for the ANN test the (R) obtained was 

0.9657 and the (MRE) was 6.1093% with 6-3-4 ANN structure.   

Figures 3 and 4 show the evolution of mean squared errors (MSE) against the number of 

iterations (epochs) of the training and the testing process for the heat and mass transfer 

coefficient of the adiabatic liquid desiccant system.  

 
Fig 3. Training and Test results of heat transfer coefficient Kh based on the 6-3-1 configuration 

 
Fig 4. Training and Test results of mass transfer coefficient Km based on the 6-3-1 
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Figures 5 and 6 show the regression coefficients of the heat and mass transfer coefficient, in 

which the best fit between the simulated data provided by ANN and the experimental values 

are presented. 

 
Fig 5. Regression coefficients (R); a: Training data, b: Test data for heat transfer coefficient Kh 

 
Fig 6. Regression coefficients (R); a: Training data, b: Test data for mass transfer coefficient Km 

3.2 Working parameters effects on heat and mass transfer coefficient 

To evaluate the sensitivity of the input variables to the performance of the dehumidifier, an 

equation proposed by Garson (1991) cited by Hernández et al., (2012) and Hamzaoui et 

al.,(2011) was used. The developed equation is based on the partitioning of connection weights 

between the input network and hidden layers, and between the hidden layers and the output 

network. Thus equation (9), for the relative importance (Ij, %) was expressed as follows: 
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Where; 

Ij: is the relative importance of the j input variable on the output variable, W: is the connection 

weight, Ni and Nh: are the numbers of input and hidden neurons, respectively.  

The superscripts ’i’,’h’, and ’o’ refer to input, hidden and output, respectively. ‘n’, ‘m’, and ‘l’ 

refer to the number of neurons in input, hidden, and output. 

The relative importance of various variables as calculated in Eq. (9) is shown in Table 3. 

According to the weight values of the artificial neural network model, the working parameters 

have a strong effect on the mass transfer coefficient. As can be seen from table 3, the air velocity 

at the inlet of the adiabatic liquid desiccant represents the highest influential parameters of 28.29 

% on the heat transfer coefficient (Kh). Also, the air temperature and the solution concentration 

at the inlet have a significant effect on the heat transfer coefficient of 22.70%, and 20.83%, 

respectively. 

Table 3. Sensitivity of the inputs variables on heat and mass transfer coefficient 

Input variable 
Relative importance (%) 

heat transfer  
coefficient (Kh) 

 mass transfer  
coefficient (Km) 

Air velocity (Uai) 28.29  34.64 
Air temperature (Tai) 22.70 2.26 
Air humidity ration (Wai) 13,14 18.71 
Solution mass flow rate  (msi) 9,28 21.53 
Solution temperature (Tsi) 5,76 1.63 
Solution concentration (Xsi) 20,83 21.23 
Total 100 100 

Similarly, the relative importance of the input variables on the mass transfer coefficient is 

shown in table 3. As can be seen, the air velocity of 34.64% represents the most influential 

parameter on the mass transfer coefficient, followed by the solution mass flow rate of 21.53%, 

solution concentration of 21.23%, and air humidity ratio of 18.71%. 

4. Conclusion 

In the present work, artificial neural network methodology has been successfully applied to an 

adiabatic liquid desiccant system to determine the heat and mass transfer coefficient.  

The developed neuronal model uses the MATLAB® environment based on the experimental 

results obtained from  (Varela et al., 2018).  The ANN architecture which consists of six input 

layers, three hidden layers, and two outputs presents a good agreement of the experimental data 

compared to those predicted by using the Levenberg-Marquardt network training function.  

The high accuracy of the neural network training function prediction and the experimental data 
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of heat transfer coefficient (Kh) was revealed by the low mean square error (MSE) which is 

0.0287 and the high correlation coefficient (R2 = 0.9975) for all datasets. 

Similarly, perfect accuracy between the TRAINLM neural network training function 

predictions and experimental data of mass transfer coefficient (Km) was achieved with mean 

square error (MSE) of 0,0012% and correlation coefficient ሺRሻ that was 0,9997 for training. 

The sensitivity analysis showed that all six input variables have a significant effect on the 

adiabatic liquid desiccant system and that the air velocity, the air temperature, the air humidity 

ratio, the liquid desiccant temperature, and the solution concentration proved to be the most 

influential parameters on the heat and mass transfer coefficient. 

These results show the good reliability of the artificial neural networks (ANN) and can be used 

to make prediction parameters of the different processes of heat and mass transfer in an 

adiabatic liquid desiccant system. 
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