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Abstract  

The present work aims to develop a dynamic Wind Turbine-Fuel Cell (WT-FC) hybrid power system under 

Simulink to meet the energy needs of dwellings in the south of Algeria. The Enercon E40 wind turbine model with 

a rated power of 500 kW was selected. Simulations were performed for four sites, namely Tinfouye, Belkbir, 

Tabelbala and Tindouf using daily wind data ranging between 2004 and 2018. The results indicated that Tindouf 

has a high mean speed of 5.57 m/s at 10 m, resulting in a power density of 194 W/m2. However, a low average 

speed of 4.81 m/s is recorded at the site of Tabelbala. The maximum energy production is recorded at Belkbir 

reaching 4183.96 MWh/year with 0.9141 C$/kWh. Therefore, a high-power density of 239 W/m² was noted in 

Tabelbala. In the environmental analysis, Belkbir was found to have the highest avoided carbon dioxide (CO2) 

emission rate of 1829.64 tons CO2/kWh. 
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1. Introduction 

Many researchers have assessed wind resources and conducted statistical analyses of wind 

potential in southern Algeria [1]-[2]-[3]. In 2019, Abderrahim updated the Algerian wind map 

based on hourly wind data collected over a period of more than 30 years [4]. Bouchiba also 

contributed to a study on the feasibility of implementing a 60 megawatt (MW) wind power 

plant in the Laghouat region [5]. A study was conducted on the potential of a 10 MW wind farm 

in Adrar in the southern region of Algeria, considering different types of wind turbines [6]. The 

windiest regions of Algeria are located in the southern part of the country, with average annual 

winds ranging from 5 to 6 m/s at a height of 10 meters [7]. This significant wind potential is 
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sufficient to power isolated areas where extending the national grid would be excessively costly. 

However, due to the intermittent nature of wind energy and the mismatch between supply and 

demand, it is necessary to store it. The use of hydrogen as a means of storage has been widely 

considered. In this case, wind energy provides the necessary power and excess energy is used 

to produce hydrogen. The produced hydrogen can then be converted back into electricity using 

a fuel cell if wind energy is insufficient to meet energy needs. Hybrid systems thus provide a 

solution to combat increasing CO2 emissions and insufficient electricity supply in isolated areas 

[8]-[9]. 

Further research has been conducted to verify if these systems are reliable enough to meet 

energy needs [10]. Additionally, a microgrid powered by a hybrid solar PV-battery-hydrogen 

system has been identified as promising [11]-[12]. 

Several studies using Simulink models have been conducted. In 2013, a hydrogen-based energy 

system model was presented, created using Simulink [13]. A Simulink model of an energy 

system consisting of a photovoltaic system, a PEM electrolyzer, and a hydrogen storage system 

was presented [14]-[15]. Additionally, another model of a hybrid energy system using 

Matlab/Simulink was presented, which utilizes solar energy, lithium-ion or lead-acid batteries, 

and hydrogen storage [16]-[17]. In 2020, Firtina-Ertis conducted a study examining the 

feasibility and optimal sizing design of an autonomous wind/hydrogen hybrid power system for 

a house in Catalca, Turkey [18]. 

In recent work, Gonçalo Calado and Rui Castro identified key characteristics of integrating 

hydrogen solutions into offshore wind power [19]. Cheng Cheng and Llewelyn Hughes studied 

the role of offshore wind power in producing renewable hydrogen in Australia [20]. In 2023, 

Komorowska developed a Monte Carlo-based framework to assess the competitiveness of 

hydrogen production from offshore wind power [21]. Additionally, Carta evaluates wind energy 

sources in the coastal and offshore regions of the Persian Gulf and the Oman Sea using 

numerical simulation and satellite data, highlighting maximum and minimum wind speeds as 

well as areas with maximum extractable wind energy [22]. 

The objective of this study is to provide a techno-economic and environmental analysis of 

hydrogen production using low and high-temperature electrolyzers powered by renewable and 

waste heat energy sources. It also aims to evaluate the profitability of these solutions as well as 

their CO2 emissions. 
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2. Study areas and wind data 

A hot and arid desert climate is a characteristic of the selected isolated regions, which are 

located in the south of the country. As shown in Figure 1, we have identified the geographical 

locations of the isolated study sites. 

 

Fig 1. Geographical sites 

The geographical coordinates of the selected sites are shown in Table 1. 

Table 1. Geographical coordinates of the sites 

Site 
Latitude 

(°) 

Longitude 

(°) 

Altitude 

(m) 

Vmean at 10 m 

(m/s) 

Tinfouye 28.43 7.55 475 4.92 

Belkbir 27.84 -0.19 278 5.51 

Tabelbala 29.42 -3.25 564 4.81 

Tindouf 27.67 -8.13 431 5.57 

Daily wind data ranging from 2004 to 2018, provided by the National Office of Meteorology 

(ONM) are used. 

3. Methodology 

3.1 Study objective 

This study develops a dynamic model of a hybrid system consisting of a wind turbine, 

electrolyzer, and fuel cell under a Simulink environment in order to provide energy to four 
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isolated sites in the south of Algeria, Tinfouye, Belkbir, Tabelbala, and Tindouf. As a result of 

the energy excess, hydrogen is produced and can be reused as needed. In figure 2, we can see a 

descriptive diagram. 

 

Fig 2. Descriptive diagram 

3.2 Energy demand 

Consumption is high during the winter season reaching a maximum of 214.67 kW in January. 

However, the energy demand is very low during the other seasons, reaching a minimum of 

27.23 kW in May (Fig. 3). 

 

Fig 3. The charge of the 10 houses of the different sites 

3.3 Wind turbine characteristics 

The power curve of the selected wind turbine is shown in Figure 4. 

 

Fig 4. Power curve of the Enercon E40 wind turbine 
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3.4 System description 

As shown in Figure 5, the developed system includes a number of different blocks. 

 

Fig 5. System components 

The wind generator provides the energy needed and the excess energy is used to generate 

hydrogen. The generated hydrogen is then stored to be converted into electricity using a fuel 

cell in the case where wind energy is not sufficient to provide the required energy needs. 

3.5 Modeling 

The Weibull distribution is often an adequate approximation for the wind speed distribution 

and provides a satisfactory fitting of wind speed [22]. The measured data can be sorted into 

wind speed classes of 1 m/s each. It is used to evaluate the effectiveness of wind potential. The 

probability density function f(V) is given as follows [23]: 

f(V) = (
k

V
) (

V

C
)
k−1

exp [−(
V

C
)
k

]    (1) 

The power density as a function of the Weibull parameters is estimated using the following 

[24]: 

DP =
1

2
× ρ × C3 × Γ(1 +

3

k
)    (2) 

We can also estimate the average energy density in a given site over a period defined as follows 

[25]-[26]: 

DE = DP × T       (3) 

The rate of hydrogen production in an electrolyzer is given by the following [27]: 

nH2
=

ղ
F
×nC×ie

2×F
      (4) 

Where: ie is the electrolyzer current. nC is the number of electrolyzer cells in series. ղ
F
 is the 

Faraday efficiency which is the ratio between the real and theoretical quantity of hydrogen 

produced in the electrolyzer, it can be given by following:  
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ղ
F
= 95.5 × exp (

0.09

ie
−

75.5

ie
2 )    (5) 

The quantity of hydrogen and oxygen consumed in the fuel cell depends on the input and output 

flow rates, the current extracted from the fuel cell and also on the volume of the electrodes. 

The different partial pressures are given as follows [28]: 

PH2
=

1
KH2
⁄

τH2×S+1
× (qH2

in − 2 × Kr × I)   (6) 

PO2
=

1
KO2
⁄

τO2×S+1
× (qO2

in − Kr × I)    (7) 

PH2O =
1
KH2O
⁄

τH2O×S+1
× (2 × Kr × I)    (8) 

Where τH2
 is hydrogen time constant (s): 

τH2
=

Van

KH2×R×T
      (9) 

Similarly, oxygen time constant and water time constant can be obtained. 

The thermodynamic potential E is [7]: 

E = [E0 +
R×T

2×F
× log(

PH2×PO2

1
2⁄

PH2O
)]    (10) 

The ohmic voltage losses of fuel cell is [27]: 

ղ
ohmic

= −I × Rint      (11) 

The overvoltage due to the activation resistance is [28]: 

ղ
act

= −B × ln(C × I)     (12) 

The fuel cell output voltage can be determined from the combined effect of thermodynamics, 

mass transport, kinetics and ohmic resistance, it is defined as follows [28]: 

V = E + ղ
act

+ ղ
ohmic

     (13) 

The power of the fuel cell is a function of current and voltage, it is defined by the following [7]: 

P = Vstack × I       (14) 

3.6 Energy cost 

The estimated cost per kWh of energy produced using wind energy is done as follows [6]: 
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CE =
PVC

EP×t
       (15) 

Where PVC is the present value cost. 

3.7 Carbone dioxide emissions 

Power generation from wind energy has the benefit of not contributing to global warming. It 

produces around 12.7 gCO2/kWh of electricity generated, compared with about 450 gCO2/kWh 

for gas-fired power stations. [29]- [30]. 

4. Results and discussions 

4.1 Statistical analysis at 10 m 

4.1.1 Annual Weibull distribution at 10 m 

As can be seen from Figure 6, Tindouf has the largest range of wind speeds (30 m/s), with a 

mean speed of 5.57 m/s. However, Tabelbala has 239 W/m² mean annual power density and a 

mean annual energy density of 2093.64 kWh/m². 

According to the high value of the scale parameter and the value of the shape parameter, we 

deduce that these sites have steady and regular wind speeds. 

 

Fig 6. Weibull distribution at 10 m 

4.1.2 Annual wind roses at 10 m 

In Figure 7, we see that there are very high frequencies for the region of Tindouf, with 

approximately 23 % for the dominant direction West North West (WNW), and with 21.2 % for 

the predominant direction West (W). 
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Fig 7. Wind roses at 10 m 

4.1.3 Monthly speed variation at 10 m 

The mean monthly wind speed ranges from 3.46 m/s in December to 8.34 m/s in June at the 

Tabelbala site (Fig. 8). 

 

Fig 8. Monthly variation of the average wind speed at 10 m from the ground 

4.2 Analysis at hub height 

4.2.1 Wind speed data at 70 m 

The mean wind speeds are 11.27 m/s for Tinfouye, 12.37 m/s for Belkbir, 11.39 m/s for 

Tabelbala, and 11.87 m/s for Tindouf. The evolution of wind speed at 70 m is shown in Figure 

9. 
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Fig 9. Wind speed at 70 m 

4.2.2 Energy produced at 70 m 

At a height of 70 meters above the ground, the energy production varies continuously 

throughout the year. Belkbir has the highest average wind power at 389.13 kW. 

 

Fig 10. Wind electric power 

4.2.3 Hydrogen production at 70 m 

The excess wind energy is used to generate hydrogen. Tinfouye produces the highest average 

quantity of hydrogen (0.00127 kmol/s). 
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Fig 11. Hydrogen production 

4.3 Economic and environmental analysis  

Belkbir has the lowest cost of energy production about 0.9141 C$/kWh. An important amount 

of carbon dioxide (CO2) is avoided by the E40 (1829.64 tons CO2/kWh). 

 

Fig 12. Energy production costs             Fig 13. CO2 quantities avoided 

5. Conclusions 

Renewable energies are becoming increasingly prevalent in the production of electricity. 

Therefore, new technologies have been developed, such as hybrid autonomous systems, which 

combine renewable energies with other sources of energy. 

According to the wind data provided by the National Office of Meteorology (O.N.M) for a 

period of 15 years (2004-2018), these four isolated regions of Algeria (Tinfouye, Belkbir, 

Tabelbala, Tindouf) seem to have an interesting wind potential with a mean annual speed of 

4.92 m/s, 5.51 m/s, 4.81 m/s, and 5.57 m/s respectively at 10 m above the ground. We deduce 

that wind farms with standalone hybrid systems of the Wind-Electrolyzer-Fuel Cell (WG-FC) 
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type are expected to be installed on these four sites. To analyze the dynamic behavior of this 

system, a simulation program using Matlab/Simulink was developed. An example simulation 

was applied to the four reported sites with available meteorological data. The results obtained 

showed that the Enercon E40 wind turbine allows energy production for the four sites 

(Tinfouye, Belkbir, Tabelbala, and Tindouf) of 4036.32 MWh/year, 4183.96 MWh/year, 

3612.85 MWh/year and 3903.12 MWh/year and a production cost of 0.9475 C$/kWh, 0.9141 

C$/kWh, 1.0586 C$/kWh and 0.9798 C$/kWh respectively at the height of 70 m. 

The use of wind energy as a source of energy reduces the quantity of CO2 that is emitted into 

the atmosphere by 97.18 percent. It is for this reason that this installation is very advantageous, 

as it provides isolated sites, as well as preserving the environment. 
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