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 In this work, we studied the effect of the Burkholderia fungorum strain Bf01 

bacterium on three heavy metals bioresorption: cadmium, copper, and zinc.  

The heavy metals bacterium resistance was studied in a liquid minimum 

standard medium, added with increasing metal concentrations. Furthermore, the 

Burkholderia fungorum strain Bf01 was monitored during its growth for its 

capacity to reduce high metals. The strain Bf01 showed high Minimal Inhibitory 

Concentrations of about (1500 mg/L, 400 mg/L, and 50 mg/L) for Cadmium, 

Zinc and Copper, respectively. Therefore, it was assumed that Burkholderia 

fungorum strain Bf01 had a high metal resistance degree, especially for 

cadmium and it exhibited a high adsorption affinity and removal of metals from 

bacterial suspensions. As a result, Burkholderia fungorum strain Bf01 presents 

an excellent biological tool for heavy metals bioresorption for its efficiency, 

reliability, and low cost. 

Keywords: 

Bioresorption,  

Burkholderia fungorum, 

cadmium,  

copper,  

water pollution,  

zinc. 

 

 

1. INTRODUCTION 

Water pollution is now a major scourge of the modern world. With rapid industrial development such 

as metal plating facilities, mining operations, fertilizer industries, tanneries, batteries, paper industries, 

pesticides, etc., heavy metals wastewaters are increasingly discharged into the environment. 

The ever-increasing demand for food products has led to the use of a large number of chemical products 

(chemical fertilizers, pesticides, etc.), often as inputs. These cultural practices have as consequences a 

weakening of the soils (vulnerability of the soils), as well as an important water pollution, in particular 

that caused by heavy metals which represents a danger to health and the environment (Ganesan, et al. 

2020, Zaynab, et al. 2022). Unlike organic contaminants, heavy metals are not biodegradable and tend 
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to accumulate in living organisms and many heavy metal ions are known to be toxic or carcinogenic and 

pose a menace to the environment (Fu et Xi 2020, Zaynab, et al. 2022). Several inorganic metals, such 

as zinc (Zn), chromium (Cr3+), manganese (Mn), copper (Cu), calcium (Ca), nickel (Ni), magnesium 

(Mg), and sodium (Na), are essential for metabolic and redox processes in trace amounts. Mercury (Hg), 

silver (Ag), cadmium (Cd), lead (Pb), aluminum (Al), and gold (Au) are heavy metals that have no role 

in biochemical functions and are very harmful to living organisms (Sharma, Tripathi, et al. 2021, Sharma 

and Kumar 2021). 

Faced with more and more stringent regulations, nowadays heavy metals are the environmental priority 

pollutants and are becoming one of the most serious environmental problems. To protect living 

organisms and the environment, the heavy metals should be removed or immobilized using useful 

technologies. To provide such treatment, many conventional chemical methods are used, including 

chemical precipitation, chemical oxidation or reduction, ion exchange, filtration, electrochemical 

treatment, reverse osmosis, membrane technologies, and the recovery Evaporative (Camargo, et al. 

2016, Chaemiso and Nefo 2019, Qin, et al. 2020, Shrestha, et al. 2021). These methods can be 

inefficient, sometimes extremely expensive, and produce a lot of toxic chemical sludge (Medfu 

Tarekegn, Zewdu Salilih and Ishetu 2020, Riseh, et al. 2022). 

The choice of heavy metals removal methods requires a critical approach since it must take into account 

the eco-efficiency of such action. In recent years, the attention of researchers focused on biological 

treatment using microorganisms to reduce toxic metals amount to acceptable environmental limits 

(Rizvi, et al. 2020, Filote, Rosca and Hlihor 2020, Blaga, Zaharia and Suteu 2021, Priya, et al. 2022). 

There are three main benefits of using biotechnology for pollutant elimination; First, biological 

processes can be performed in situ on the contaminated site; they are generally harmless to the 

environment (no secondary pollution) and are profitable. Different biomass types have been investigated 

for heavy metals biosorption properties. Using microorganisms as a heavy metal biosorbent is an 

effective, eco-friendly, and economical alternative to existing treatments (Filote, Rosca and Hlihor 2020, 

Alwaleed, Latef and Mostafa 2021) 

Microorganisms used in bioremediation are indigenous or non-indigenous, and they can be introduced 

to contaminated sites in different ways. Using indigenous microorganisms in contaminated 

environments is the most important approach that challenges solving problems related to pollutants 

biodegradation and bioremediation (Verma and Jaiswal 2016, Oziegbe, et al. 2021).  

Flavobacterium, Pseudomonas, Bacillus, Arthrobacter, Corynebacterium, Methosinus, Rhodococcus, 

Mycobacterium, Stereum hirsutum, Nocardia, Methanogens, Aspergillus niger, Pleurotus 

ostreatus, Rhizopus arrhizus, Azotobacter, Alcaligenes, Phormidium valderium, Ganoderma 

applantus are some microbial species that help in bioremediation of heavy metals (Andreazza, et al. 

2011, Oubohssaine, Sbabou and Aurag 2022, Priya, et al. 2022) 

In this work, we study the effect of a rhizospheric bacterial strain Burkholderia fungorum Bf01 on the 

reduction of three metals: cadmium, zinc, and copper. B. fungorum is widely distributed in nature and 

its basic habitat is soils.  

2. MATERIAL AND METHODS 

2.1 Bacterial strain 

The bacterium Burkholderia fungorum strain Bf01 was isolated from peanut (Arachis hypogea) 

endophytes from Algerian oasis (Sebseb-Ghardaia, Algeria), at the Soil Biology Laboratory of 

Université des Sciences et Technologie Houari Boumedienne- Algeria (USTHB). The strain was 

characterized by the phylogenetic method and was stored in glycerol (20%) at -70°C. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pseudomonas
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/bacillus
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/methanogens
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/rhizopus
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/azotobacter
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2.2 Culture medium 

The Sucrose minimal salts Low Phosphates (SLP) medium (1% sucrose, 0.1% (NH4) SO4, 0.05% 

K2HPO4, 0.05% MgSO4, 0.01% NaCl, 0.05% Yeast extract, pH 7.4), was used for bacterial cultures 

(Jiang, et al. 2008). The bacterial suspensions were used to follow bacterial growth with and without 

heavy metals, as well as to study the metals' bioresorption. 

The bacterial cultures were carried out using flasks (Schott) of 500 ml, filled to 1/5th with SLP liquid 

medium. The pH was adjusted to 6-6.5 for Cd and Cu respectively and to 7 for Zn, corresponding to the 

optimum retention pH of each metal (Vijayaraghavan and Yun 2008). The flasks were incubated at 

28°C, under agitation at 200 rpm. Bacterial growth was carried out by reading the OD600 at different 

times (0, 15, 24, 48, 72, 96, and 120 hours). 

The bacterial cells of the exponential growth phase (between 12 and 15 hours of incubation) were 

collected to test their heavy metals resistance and to determine the Minimal Inhibitory Concentrations 

(MIC) (Jiang, et al. 2008). 

2.3 Heavy metal solutions  

The effect of different concentrations of three metals cadmium, zinc, and copper, on bacterial growth 

was studied in the present work. To do this, a concentration range for each metal stock solution of 10 

g/L was prepared from 50 to 10000 mg/L (0-50-100-200-300-400-500-1000-2000-3000-4000-5000-

10000 mg/L) and filtered at 45µm. 

2.4 Determination of Minimal Inhibitory Concentrations  

The MIC is commonly used to study a strain's sensitivity to antibiotics. Its application for other toxic 

elements allows the determination of the bacteria resistance threshold to these molecules. The MIC of a 

toxicant is defined as the lowest concentration of this molecule capable of preventing the visible 

development of the bacteria under standardized conditions (Untereiner 2008). 

To determine the MIC of the Bf01 strain to the metal elements (Cd, Zn, and Cu), the OD600 was followed 

using different metals concentrations (Cd: 500-2500 mg/L, Zn: 300-600 mg/L, Cu: 20-200 mg/L). The 

kinetics were compared to a bacterial growth kinetic in an SLP medium without metal, which represents 

the experiment control. 

2.5 Heavy metal resistance of B. fungorum strain Bf01 

The heavy metal resistance evaluation of the Bf01 strain was determined by monitoring the reduction 

rate of bacterial growth in the presence of different metal concentrations, at two different times (24 hours 

and 50 hours) and has been calculated using Equation 1: 

Growth reduction rate (%) = (1 −
Y

Yt
) × 100 %   (1) 

Y: OD600 at 24h or 50h in the presence of metal concentration 𝒙,   

Yt: OD600 at 24h or 50h of the control  

2.6 Heavy metals adsorption by B. fungorum strain Bf01 

The metal dosage was carried out using “Atomic Absorption Spectrophotometry-AAS” Flame mode 

(Chang, Law and Chang 1997), followed simultaneously with Bf01 strain growth. 

The metal biosorption was estimated by analyzing the residual metal of the supernatant after 

centrifugation at 15000 rpm for 15 minutes. The metal removed from the aqueous solution was 
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calculated by determining the difference between the initial and the final metal concentrations (Sinha 

and Mukherjee 2009) following Equation 2: 

Ve = Vi - Vr 
(2) 

Ve: eliminated volume 

Vi: Initial volume (at t0) 

Vr: residual volume 

3. RESULTS AND DISCUSSION  

3.1 Determination of MIC and evaluation of bacterial resistance 

The growth kinetics shown in Figure 1, revealed different responses at different metal concentrations.  

a 

 

b 

 

c 

 

Fig.1. Increasing concentrations effect of (a) Cadmium (500 – 1000 - 1500 – 2000 – 2500 mg/L), (b) 

Zinc (300 – 400 - 500 – 600 mg/L), and (c) Copper (20 – 50 - 100 – 200 mg/L), on B. fungorum strain 

Bf01 growth in SLP liquid medium 
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The effect of Cd, Zn, and Cu on the cell growth of strain B. fungorum Bf01 cultured in the SLP 

medium was investigated. From the bacterial growth curves with and without metals, the kinetics 

followed the same appearance, except for the long lag phase of growth with metals kinetics. For the 

control, rapid growth could be observed and the lag phase does not exceed 1-2h, however, it was 

approximately 8h for growth with metals. In contrast, growth inhibition was observed for the growth 

curves of Cd2000, Zn500, and Cu100, indicating that strain B. fungorum Bf01 was able to tolerate very 

high concentrations of metals Cd, Zn, and Cu when cells were cultured over 96h. Furthermore, the 

growth of Bf01 was inversely proportional to the metal concentrations. This could be due to significant 

bacteria toxicity, probably caused by a cell morphology alteration (Zhang and Min 2010, Chatterjee, 

Ghosh and Mukherjea 2011). Indeed, it has been shown previously for other Burkholderia species (Xu, 

et al. 2009) that such behavior is due to heavy metal ion deposition, precipitation of organic functional 

groups, or metal sequestration, considering that adsorption and/or complexation could be occurring 

between heavy metals and microbially secreted EPS  (Vishan, Sivaprakasam and Kalamdhad 2017, 

Naveed, et al. 2019, You, et al. 2021).  

To evaluate the metal tolerance of strain Bf01, growth reduction rates in the presence of different 

concentrations of Cd, Zn, and Cu were established at two different times (24h and 50h), and were 

represented in the following histograms (Figure 2). 

a 

 

b 

 

c 

 

Fig 2. Growth reduction rate of Burkholderia fungorum Bf01strain 

in the presence of different concentrations of (a) Cd, (b) Zn et (c) Cu 
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The analysis of the growth reduction rate of B. fungorum strain Bf01 in liquid SLP medium, 

allowed us to note that at 24h of incubation, growth was reduced to approximately half (51, 50 and 49%) 

for (Cd, Zn, and Cu) and high concentrations up to (2000, 500 and 50 mg/L) were respectively tolerated 

by the bacterium. However, at 50h of incubation, the growth was inhibited with reduction rates of (71, 

66, and 60%) for the concentrations (2000, 500, and 50 mg/L) of Cd, Zn, and Cu respectively.  

According to the results in Figures 1 and 2, B. fungorum strain Bf01 shows significant tolerance to the 

three metals studied. The Minimal Inhibitory Concentrations (MIC) for cadmium, zinc, and copper 

could be included between 1500- 2000 mg/L, 400- 500 mg/L and 50- 100 mg/L respectively. 

To identify the toxicity order of B. fungorum strain Bf01 to Cd, Zn, and Cu, we compared the growth 

kinetics at heavy metals MICs (Cd-1500 mg/L, Zn-400 mg/L, and Cu-50 mg/L) (Fig 3). 

 

Fig 3. Comparison of the growth kinetics of Burkholderia 

fungorum strain Bf01 in the presence of the three heavy metals 

(Cd, Zn, and Cu) at tolerance levels. 

The growth kinetics with metals showed the same pattern as the control (without metal), therefore, 

a significant growth reduction was observed. After 30 hours, cell biomass production was reduced 

almost four times in the presence of Cu50 mg/L, 2.4 times for Cd1500 mg/L, and two times in the 

presence of Zn400 mg/L. We can also note that despite this significant B. fungorum growth reduction 

in the presence of the three heavy metals; the bacterial growth after 30 hours remained appreciable (Fig. 

3). Therefore, it has been highlighted that the toxicity order of the Bf01 strain for these three metals, 

was: Copper > Zinc > Cadmium. 

Comparing the heavy metals MICs of the Bf01 strain with those obtained in previous works, it was 

suggested that Bf01 shows a significant tolerance to the three metals studied. Indeed, the Cd MIC for 

Burkholderia fungorum was 400mg/L (Liu, et al. 2019), 0.89 mM for Burkholderia cepacia GYP1 

(Zhang, et al. 2019), 3.56 mM for Planococcus rifietoensis (Bhakta, et al. 2014), 2.22 mM 

for Halomonas BVR 1 (Rajesh, et al. 2014), 2.67 mM for Citrobacter sp. JH 11-2 (Shim, et al. 2015), 

4.45 mM for Enterobacter sp. OCPSB1 (Shim, et al. 2015) and Pseudomonas sp.M3 (Shim, et al. 2015), 

3.65 mM for Salmonella enteric (Shim, et al. 2015), and others in previous reports (Bhakta, et al. 2014). 

In another work, a strain Paraburkholderia fungorum BRRh-4. was isolated from a bacterial community 

used as Plant Growth Promising Rhizobacteria (PGPR) and exposed to high heavy metals 

concentrations of Pb+, Cd+, Cr+, Ni+, Au+, and Ag+ (Banach, et al. 2020, Raihan, et al. 2022). 

Furthermore, five isolated strains belonged to the genera Sphingomonas, Stenotrophomonas, and 
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Arthrobacter, showed high resistance to copper (MIC ranged from 3.1 to 4.7 mM), Zn2+ ranged from 

0.8 to 17 mM and Cd2+ ranged from 0.4 to 3.6 mM (Altimira, et al. 2012). In other research, bacteria 

isolated from different industrial locations were tested for metal resistance against CdP2+, NiP2+, HgP2+, 

CuP2+, and PbP2+ by determining the minimal inhibitory concentration ranging from 10 to 250 mg/L. 

The strain Bf01 has shown a high resistance for Cd but less important for Zn compared to that revealed 

in other works with strains of the same species, which has revealed Zn 1200 mg/L (Liu, et al. 2019), or 

for its potential of Cadmium sequestration (Zhang and Min 2010). 

3.2 Cd, Cu, and Zn adsorption kinetics by B. fungorum strain Bf01 

The concentration of the three metals was followed during the bacteria growth for 10 days. 

a 

 

b 

 

  c 

 

Fig.4. Metals reduction monitoring of (a) Cd (1500 mg/L), (b) Zn (400 mg/L) and (c) Cu (100 mg/L) 

during bacterial growth 
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have decreased and the kinetics are slowed down and form a plateau (0.6, 0.36, and 0.1 mg L-1.h-1) for 

Cd, Zn, and Cu respectively (Phase 2). Between 192 and 240 hours, a slight rate increase resumes (3.03 

and 05.1 mg L-1.h-1) for Cd and Cu, however, the elimination of Zn remained slightly constant. This 

reduction was about 80, 98, and 97% for Cd, Zn, and Cu respectively, compared to the initial metal 

concentrations, approaching a complete metal removal after 10 days of inoculation (phase 3). The 

elimination of heavy metals by B. fungorum strain Bf01 starts during the growth lag and exponential 

phases and even from the first hours of bacteria contact with the metal. Most of the metal elimination 

was achieved either during (case of Zn and Cu) or just after the growth exponential phase (case of Cd).  

The reduction of Cd, Zn, and Cu in the presence of the Bf01 strain, suggests that the elimination of the 

metal was achieved through the bacteria cell that could have effective mechanisms for detoxifying the 

three metals (Choińska-Pulit, Sobolczyk-Bednarek and Łaba 2018, You, et al. 2021). This was probably 

achieved according to two complementary processes: bioaccumulation, which would occur mainly 

during the growth active phase (Congeevaram, et al. 2007, Sinha and Mukherjee 2009, Fan, Okyay and 

Rodrigues 2014), and a bio-adsorption could happen during the stationary and decline phases (Wang, et 

al. 1997). Indeed, several works carried out in the bioremediation field, using live bacteria, have shown 

that a large part of the metal is eliminated during the active growth phase (exponential phase). On the 

other hand, a dependence of cell density on metal reduction is noted during this phase (Sinha and 

Mukherjee 2009), during which, most of the electrochemical and ionic exchanges take place, including 

the metal ions transfer and their biosorption (Beisl, et al. 2019). However, regular and constant removal 

during the stationary phase has been noted and considered independent of cell growth (Chang, Law and 

Chang 1997, Damodaran, Suresh and Mohan 2011, Pratama 2020). During 2nd phase, the bacterial 

metabolism and metal elimination are slowed down, characterized by the depletion of nutrients and 

elements necessary for cell multiplication. During this phase, the exopolysaccharide (EPS) is produced, 

which is favored by the stress culture conditions (Sinha and Mukherjee 2009, Maier and Pepper 2015). 

During the 3rd phase, the resumption of the elimination of the metal could be related to the presence of 

secondary metabolites in the medium like the EPS which play an eminent role in heavy metals 

biosorptions (Blaga, Zaharia and Suteu 2021, Chug, et al. 2021). Indeed B. fungorum is considered a 

good producer of exopolysaccharides, which may be responsible for heavy metals bioresorption in the 

present study (Zhang and Min 2010). The production of such polymers by bacteria, in these conditions 

hostile to growth, gives them a protective role (Fu et Wang 2011, Damodaran, Suresh and Mohan 2011, 

Liu, et al. 2019). 

4. CONCLUSION  

In the present study, we have demonstrated the ability of B. fungorum strain Bf01 to reduce heavy metals 

in aqueous solution. The Bf01 has shown a very good resistance and a high tolerance towards the studied 

metals, where high Minimal Inhibitory Concentrations (MIC) (1500, 400, and 50 mg/L) for Cd, Zn, and 

Cu were carried out respectively. The metal removal begins from the first contact hour with speeds fast 

enough reduction. B. fungorum strain Bf01 was able to eliminate almost all of the three metals up to 80, 

98, and 97% for Cd, Zn, and Cu, respectively, after just 10 days of incubation. 

The results show that, given its effectiveness, availability, and low cost, B. fungorum strain Bf01 can be 

a great tool for seeing promising biological bioremediation of heavy metals. Bioremediation techniques 

seem to have a bright future. Their cost compared to the physicochemical techniques is favorable. They 

have proven to be a useful alternative to conventional systems for the removal of toxic metals in 

industrial effluents. Bioremediation is still far from being fully controlled and requires investigation and 

further research in the direction of modeling and regeneration of biosorbent mass. 
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