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 This study employs the Generalized Pareto Distribution (GPD) to model high 
temperature events at the Batna station, strategically applying varying 
thresholds to enhance accuracy and mitigate tail distribution bias. This was done 
by analyzing historical rainfall data from 1981 to 202. Using maximum 
likelihood estimation and an innovative approach to fitting multi-threshold 
GPDs, stable thresholds were established, particularly identifying the Pareto II 
type as the most suitable model for temperatures exceeding 25°C. Analysis 
revealed a consistent average temperature of 27.52°C, with a negative skewness 
indicating a bias toward lower values within extreme temperatures. The study 
also predicts return levels for different periods, providing critical temperature 
thresholds expected to be exceeded every 2, 20, 50, and 100 years. These 
findings contribute to understanding extreme temperature dynamics in the 
region, supporting urban planning, infrastructure design, and climate resilience 
strategies. 
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1. INTRODUCTION 

According to projections by the Intergovernmental Panel on Climate Change (IPCC, 2021), the 
Mediterranean region is expected to experience an increase in average annual temperatures from 1.5°C 
to 2.5°C by the end of the century, Surpassing global averages due to increased vulnerability to global 
warming. Concurrently, the region could experience a 35% reduction in summer rainfall on the south 
coast and 25% on the north coast, which would significantly reduce the frequency of rainy days 
(Lionello et al., 2012). This trend highlights the urgent need for targeted adaptation strategies, especially 
in countries like Algeria, where recent studies show that temperatures are rising faster than the global 
average, while rainfall patterns are becoming increasingly unpredictable (Beniston et al., 2018). 
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These anticipated climate changes pose significant risks to ecosystems, agriculture, water resources and 
public health. Research suggests that Algeria may face increased frequency and intensity of droughts, 
heat waves and severe weather events, resulting in a significant decrease in water availability, Which 
would have a cascade effect on agriculture, drinking water sources and energy production in the region 
(Beniston et al., 2018; WMO, 2019). According to the World Health Organization (WHO, 2020), 
climate change can also promote the spread of diseases such as malaria because rising temperatures 
allow vector-borne diseases to reach areas as far away as not affected, adding additional health risks 
(WHO, 2020; Caminade et al., 2014). 

In response to these climatic pressures, a comprehensive understanding of extreme weather events and 
their patterns in northeastern Algeria is essential. Developing robust adaptation strategies informed by 
this knowledge will be essential to mitigate the impacts of rising temperatures and decreasing rainfall, 
thereby supporting sustainable development and public health . 

2. LITERATURE REVIEW AND METHODOLOGY 

The literature on the Mediterranean climate and Algeria underscores an urgent need for comprehensive 
studies on climate extremes. While early studies provided foundational insights into rainfall patterns, 
recent research using statistical models like GPD has expanded understanding of temperature extremes 
and their long-term impacts. This body of research is critical for forming adaptation strategies to protect 
vulnerable regions, especially in northeastern Algeria, where climatic extremes pose serious risks to 
water security, agriculture, and health. Going forward, further research integrating local climate data 
with advanced modeling techniques will be essential for effective climate resilience planning across the 
Mediterranean basin (Giorgi & Lionello, 2008; Cramer et al., 2018). 

2.1 Introduction to Mediterranean Basin Climate Challenges 

The Mediterranean basin, situated between Africa, Asia, and Europe, is a region of immense ecological 
and socio-economic significance. With over 2.6 million km² of coastal watersheds and critical 
biodiversity, it supports 4% to 18% of known marine species while covering less than 1% of the world's 
ocean area (Macias et al., 2013; Coll et al., 2010). However, the region faces heightened vulnerability 
to climate change, marked by warming temperatures and declining rainfall (Lionello et al., 2012). 

 
Fig 1. Mediterranean basin. (d-Maps, 2023) 

According to the IPCC’s projections, Mediterranean regions may witness a decrease in precipitation by 
as much as 50% by 2100, with temperatures rising up to 3.8°C under high-emission scenarios (IPCC, 
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2021). Such changes include more prolonged droughts and higher temperatures, particularly in southern 
and eastern Mediterranean areas, exacerbating the risk of water scarcity, agricultural loss, and ecosystem 
stress (Cramer et al., 2018; Guiot & Cramer, 2016). These projections emphasize an urgent need for 
mitigation, particularly in semi-arid and arid areas where water resources are limited and demand is high 
(García-Ruiz et al., 2011). 

 
Fig 2. Daily maximum temperatures Number of days per year above 30C° (UK Met Office) 

2.2 Climate Change Impacts in Algeria 

Algeria, with a climate that spans from Mediterranean along the coast to desert in the south, illustrates 
the stark regional diversity within the Mediterranean basin (Toumi, 2015). Its northern coast experiences 
wet, mild winters and dry, hot summers, whereas inland areas are semi-arid, transitioning into the hyper-
arid Sahara in the south (Giorgi & Lionello, 2008). This climatic diversity has significant implications, 
particularly as the north faces growing pressures from urbanization and agriculture, while the arid 
regions deal with extreme temperatures and minimal rainfall (Medjerab, 1984; Habibi, 2013). 

 
Fig 3. Climatic region map of the 5 zones (Map designed by A.Ziari  using ArcGIS 9.2)  
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2.2.1 Zone D 
This large area, covering most of southern Algeria, represents the Sahara Desert region. It is 
characterized by extremely hot and arid conditions with minimal precipitation. This is the most dominant 
climate zone in the country. 

2.2.2 Zone C 
This zone is located in some parts of northern Algeria, likely covering regions of higher elevation, such 
as the Atlas Mountains. The Mediterranean mountain climate brings cooler temperatures and more 
rainfall compared to the lowland regions, especially in the winter. 

2.2.3 Zone E 
These small, isolated regions, seen in red on the map, likely correspond to localized areas that experience 
a hotter version of the Mediterranean climate but with more extreme summer temperatures and cold 
winters. 

2.2.4 Zone B 
This climate zone extends across parts of northern Algeria, further inland from the coast. It experiences 
hot summers and cool to cold winters, with a moderate amount of precipitation, particularly in winter. 

2.2.5 Zone A 
This narrow strip along the northern coastline of Algeria represents the coastal regions. These areas 
experience mild, wet winters and hot, dry summers, typical of a Mediterranean climate heavily 
influenced by the nearby Mediterranean Sea. 

Climate models predict that Algeria may experience more frequent droughts, intense heatwaves, and 
reduced water availability, which threaten both agriculture and public health (Beniston et al., 2018; 
WMO, 2019). For example, research by Diffenbaugh and Giorgi (2012) suggests that, by mid-century, 
temperatures in Algeria’s northern regions may increase beyond the global average, with extreme 
temperatures affecting crop yields and water resources. Furthermore, these environmental changes 
facilitate the spread of diseases like malaria in areas previously unaffected, introducing new public 
health risks (WHO, 2020; Caminade et al., 2014). 

2.3 Climate Extremes and Methodological Approaches 

Early research on Algeria’s climate predominantly focused on water resources due to their critical role 
in semi-arid regions. Studies by Medjerab (1984) and Habibi (2013) concentrated on rainfall variability 
and drought patterns. However, this emphasis left gaps in the understanding of other extreme weather 
events, such as heatwaves and severe temperature variations, which have significant implications for 
long-term resilience and infrastructure stability (Toumi et al., 2019; Cherif et al., 2017). 

Recent studies address these gaps by applying advanced statistical methods like the Generalized Pareto 
Distribution (GPD) to model temperature extremes, particularly in northeastern Algeria. Cheratia (2021) 
uses GPD to analyze Batna’s temperature data, providing a framework to predict rare events and extreme 
temperature trends effectively. Such methodologies are essential, given that extremes are expected to 
intensify under climate change, as indicated by research using GPD models to understand distribution 
tails (Coles et al., 2001; Davison & Smith, 1990). This approach enables a more precise understanding 
of risk associated with climate extremes, offering critical insights for decision-making (Gilleland & 
Katz, 2011). 
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Fig 4. Workflow diagram of the methodological approach to modelling extremes temperature 

2.4 Regional Focus: Batna’s Semi-Arid Climate 

The Batna region, located in northeastern Algeria, provides a microcosm of Algeria’s broader climate 
challenges. Positioned at the intersection of the Tellian Atlas and Saharan Atlas ranges, Batna 
experiences semi-arid conditions with substantial seasonal variations due to its mountainous terrain and 
altitude (Toumi, 2015). This region is classified into three bioclimatic zones: a high-moisture zone 
(above 1,800 m with rainfall up to 1,200 mm annually), a middle zone (moderate rainfall, 400–800 mm), 
and an arid zone (low rainfall, 200–400 mm), illustrating the climatic diversity within a relatively small 
geographic area (Castro-Camilo, 2021). 

The unique climate of Batna, especially in its arid zones like the Beni Imloul forest, experiences extreme 
temperatures, reaching up to 45°C in summer. This pattern underscores the importance of understanding 
the region's climate variability and extremes to mitigate future risks (Toumi et al., 2019; Cherif et al., 
2017). Effective adaptation strategies, informed by local climate data, are essential for water resource 
management, agriculture, and public health, especially as extreme temperature days are projected to 
increase (Cheratia, 2021; Bronaugh & Werner, 2013). 
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Fig 5. Location of study area (Map designed by A.Ziari  using ArcGIS 9.2) 

3. MODELING 

The use of extreme value theory to establish thresholds in statistical analysis is a significant 
advancement, particularly influenced by foundational contributions from Pickands (1975) and others. 
This methodological framework, based on the Balkema-de-Haan-Pickands theorem, enables effective 
simulation of distribution tails, which is essential for analyzing extreme observations. Recent studies 
have underscored the importance of the Generalized Pareto Distribution (GPD) in temperature extreme 
modeling, highlighting its versatility across various applications. 
Recent work, such as that by Maposa et al. (2021), explores a bivariate time-varying threshold approach 
to model extreme temperatures, demonstrating how the GPD can be adapted to capture the complex 
dynamics of maximum temperatures in South Africa. Similarly, Chen et al. (2024) propose an 
asymmetric GPD based on a peaks-over-threshold model, reinforcing the distribution’s utility in 
handling asymmetries in climate extremes. 
Studies by O'Sullivan et al. (2019) use a Bayesian approach to spatially analyze temperature extremes 
in Ireland, showing how the GPD can integrate into spatial models to better represent local climate 
extremes. Additionally, Raggad (2018) compares stationary and non-stationary approaches for modeling 
extreme temperatures in Riyadh, highlighting the GPD's value in capturing temporal variations in 
temperature extremes. Although focused on rainfall events, Martins et al. (2020) also illustrate the 
flexibility of the GPD in analyzing intense climatic events in Latin America. 
These studies confirm the relevance of the GPD in analyzing temperature extremes and other climatic 
phenomena, providing a robust methodological foundation for future research and applications in 
climate risk management. 
The data used in our analysis were obtained from the Batna meteorological station and include monthly 
average temperatures recorded from 1981 to 2021. This extended observation period strengthens the 
robustness of our GPD model, as it captures long-term climatic variations and offers a comprehensive 
understanding of regional climate trends and anomalies. By accurately identifying and modeling 
temperature extremes, our study makes a meaningful contribution to the scientific literature, providing 
enhanced strategies for managing the risks associated with extreme weather events and effectively 
supporting public policy decision-making. 
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3.1 Threshold 

Employing extreme value theory to establish thresholds for statistical analysis is a crucial progression 
in the field, prominently influenced by seminal contributions from Pickands (1975), Davison (2015), 
Frid (2012), and Smith (1989). These researchers have built upon the Balkema-de-Haan-Pickands 
theorem, initially established in 1975, which is a cornerstone in the statistical modeling of extreme 
events. This theorem provides a methodological framework for effectively simulating the tails of 
probability distributions, which is particularly valuable when dealing with the most extreme 
observations in data sets. The technique derived from this theorem is designed specifically to handle the 
tail behavior of distributions, a crucial aspect when the most extreme values are of primary interest. This 
involves establishing a well-defined threshold, which serves as a demarcation point indicating where 
the tail begins and the central part of the distribution ends. This threshold is not arbitrary but is 
determined based on statistical rigor to ensure that the subsequent analysis of tail data is both valid and 
reliable. The process of setting this threshold is sensitive to the assumptions about the independence of 
data points and their perturbations. Independence here refers to the lack of autocorrelation within the 
data, meaning that the occurrence of one extreme value does not influence the occurrence of another. 
This assumption is vital as dependencies can significantly distort the extremity modeling. Similarly, 
understanding how data perturbations such as measurement errors or anomalies can affect the analysis 
is crucial for maintaining the integrity of the model’s output. 

After setting the threshold, the method aims to choose a group of data points, namely independent peaks 
that are higher than this threshold. These summits are then believed to adhere to the Generalised Pareto 
Distribution (GPD). The GPD is particularly suited for this kind of analysis due to its flexibility in 
modeling different shapes of distribution tails, making it a robust choice for extreme value theory 
applications. Figure 5 in the referenced material likely illustrates these autonomous peaks and the 
threshold level, providing a visual representation of how the GPD fits these extremes. This threshold 
technique not only isolates the most extreme events from the bulk of the data but also ensures that the 
statistical analysis concentrates on the behavior of the data in these extreme regions.  

The assumption that the peak values exceeding the established threshold conform to a GPD allows 
statisticians to estimate the tail properties such as the frequency and magnitude of extreme occurrences. 
This is particularly useful in disciplines such as hydrology, finance, and environmental science, where 
predicting extreme events can be crucial for risk management and planning. 

𝑃(𝑋 = 𝑘) =  𝑒−𝜆 𝜆𝑘

𝑘!
     (1) 

Where:    λ: is a positive constant called the law parameter. 
               X: symbolizes the number of occurrences in a random event. 
                k: Represents a specific value or realization of the random variable X 

We employ the Generalized Pareto Distribution (GPD) to represent the characteristics of distribution 
tails, specifically by establishing a defined threshold referred to as u. Understanding the parameters of 
the GPD is essential because they offer valuable information about the extreme values of the original 
distribution. The "tail index" or shape parameter ξ, is a key parameter in this regard, as it directly informs 
us about the weight or 'heaviness' of the tails.  

In the GPD model, a higher tail index indicates that the tails of the distribution are thicker, suggesting a 
higher probability of extreme values occurring as compared to what might be expected under a standard 
normal distribution. This is particularly important in fields like risk management and financial modeling, 
where understanding the likelihood of extreme outcomes is crucial for making informed decisions. 
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When the tail index ξ exceeds 0, it implies that the distribution has a "heavy tail." Heavy tails are 
characteristic of distributions, where the probabilities of realizing extremely high values are non-trivial, 
thereby indicating a higher likelihood of observing extreme events than would be anticipated under the 
Gaussian model. This property makes the GPD an excellent choice for modeling extreme values in 
diverse applications ranging from environmental data analysis to financial risk assessment. 

Furthermore, to aid in the practical understanding and visualization of this concept, the Mean Excess 
Function (ME) Plot is utilized. The ME Plot provides a graphical representation of the expected excess 
over the threshold u as a function of the threshold itself. It is defined mathematically as:  

E(X−u ∣ X>u )       (2) 

 where X is a random variable exceeding the threshold u. 

This plot is instrumental in verifying whether the GPD is an suitable model for the data under analysis. 
It helps in illustrating how the average size of the exceedances over the threshold changes as the 
threshold increases, thus offering valuable insights into the stability and extremity of the (Please 
complete the sentence). 

The Mean Excess ME Plot is defined as follows:  

{(𝑢, 𝑒𝑛(𝑢)), 𝑋𝑛:𝑛 < 𝑢 < 𝑋1:𝑛}    (3) 

where, 𝑋𝑛:𝑛  𝑒𝑡 𝑋1:𝑛 represent the highest and lowest values in the sample defined by. 

𝑒𝑛(𝑢) =  
∑ (𝑋𝑖−𝑢)+𝑛

𝑖=1

∑ 𝐼(𝑍𝑖>𝑢)
𝑛
𝑖=1

=  
1

𝑁𝑢
∑ (𝑋𝑖 − 𝑢)+𝑛

𝑖=1    (4) 

This is the sum of the excesses above the threshold u divided by the number Nu of data exceeding u. The 
sample mean excess function en(u) is the empirical estimator of the mean excess function. 

𝑒(𝑢) =  Ε[𝑋 − 𝑢I 𝑥 > 𝑢]     (5) 

For GPD, the ME is as follows: 

𝑒(𝑢) =  
𝜎+𝜉𝑢

1−𝜉
       (6) 

If the ME-plot exhibits a linear pattern beyond a specific threshold value of u (25°C in our case), it 
indicates that the excesses above this threshold conform to a Generalized Pareto Distribution (GPD). 

3.2 Results and discussion  

If the ME-plot exhibits a linear pattern beyond a specific threshold value of u (25°C in our case), it 
indicates that the excesses above this threshold conform to a Generalized Pareto Distribution (GPD). 

By strategically employing various threshold ranges in our analysis, we can significantly improve the 
accuracy of our model and mitigate potential biases associated with the tail distribution. The Generalized 
Pareto Distribution (GPD) is particularly well-suited for this purpose, as it allows flexible modeling 
across different thresholds. This adaptability is crucial for analyzing and determining the optimal 
threshold that provides the most accurate estimate suited to our specific scenario. In our approach, we 
further explore the exceptional values within our dataset by applying GPD across these different 
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thresholds. This allows a comprehensive examination of the behavior of different tail segments under 
different conditions, offering a nuanced view of distribution characteristics. An innovative technique 
we employ involves fitting data to a multi-row GPD distribution, where scale and shape parameters are 
plotted against different thresholds. This method, known as “stable scale and shape parameters”, is 
designed to identify the most stable and appropriate thresholds for analysis. By systematically 
establishing a distinct threshold each time, we can observe and evaluate the stability of the parameters 
(shape and scale). This iterative process enables us to locate the exact point at which the parameters 
show stable behavior, indicating a reliable threshold setting. We implement this method using the 
Extremes package of the R statistical analysis system (Gilleland et al., 2004). This package is equipped 
with sophisticated tools specifically designed to determine optimal thresholds based on a detailed 
analysis of the stability of shape (ɛ) and scale (σ) parameters. These tools are invaluable for our analysis, 
as demonstrated in Figure 7, which illustrates the application of the method. Our objective through this 
analytical process is to determine a range of stability points for these two parameters where the graph 
displays approximately linear and stable behavior. This stability is crucial to ensure that the model’s 
predictions are both reliable and robust. Interestingly, we observe that, once the temperature exceeds 
25°C, the scale and shape parameters maintain a relatively constant profile, suggesting a significant 
threshold that may be crucial for understanding temperature extremes in our dataset. 

 
Fig 6. Average monthly maximum temperature exceedance curve at Batna weather station 

 
Fig 7. Plot of ML estimates of shape and corrected scaling parameters for different threshold ranges of 

monthly maximum temperature at Batna meteorological station. 
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3.3 Descriptive analysis  

Figure 8  provides a clear visual depiction of temperature readings that exceed the set threshold, showing 
these extreme values in a vivid manner. In the meantime, Table 1 thoroughly describes the statistical 
characteristics linked to these temperatures. The data shows that the station's average temperature is 
27.52°C. Additionally, half of the temperatures recorded fall between 25.06°C and 26.85°C, hinting at 
a consistent temperature pattern in this range. Furthermore, examining the shape of the data also shows 
a negative skewness, suggesting that the maximum temperatures distribution is biased towards lower 
values. Additionally, the kurtosis value varies from the standard of 3, resulting in the dismissal of the 
assumption of normality for this set of monthly maximum temperatures. This departure indicates a 
distribution with tails that vary from those of a standard distribution. 

Figure 6 also confirms that the sequence of peak temperatures exhibits a stationary pattern, showing no 
significant trends over time and reinforcing the stability of these extreme temperature conditions. 

Table 1. Descriptive statistics 

N 𝑁𝑢 Mean 3𝑟𝑑Qu Max 1𝑠𝑡Qu Min Kurtosis Skewness 

36 34 27.52°C 28.14°C 30.88°C 26.85°C 25.06°C 0.74 0.70 

 
Fig 8. Maximum monthly temperatures above 25°C 

4. PARAMETER ESTIMATION AND MODEL VALIDATION  

After identifying the surplus values, GPD parameters can be estimated using this data. The parameters 
include a shape parameter that determines the form of the extreme value distribution and a scale 
parameter that measures how far the extreme values are from the specified threshold. ML maximum 
likelihood was used to estimate the parameters. Assuming that our sample of excesses is 𝑋 =

(𝑋1, … , 𝑋𝑁𝑢
), it follows the GPD distribution: 

𝐺𝑃𝐷𝑢(𝑥) = 1 − [1 −
𝜉(𝑥−𝑢)

�̃�
]

−1

𝜉
 𝜉 ≠ 0    (7) 

If 𝑥 = 𝑦 − 𝑢, the density function g of 𝐺𝑃𝐷𝑢(𝑥) is then for: 
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𝑑

𝑑𝑥
𝐺𝑃𝐷𝑢(𝑥) = 𝑔(𝑥)       (8) 

𝑔(𝑥) =  
1

𝜎
(1 + 𝜉

𝑥

𝜎
)

−
1

𝜉
−1

      (9) 

The probability is determined by:            ℒ(𝜉, 𝜇, 𝜎, 𝑋)  =  ∏ 𝑔(𝑋𝑖)
𝑛
𝑖=1     (10) 

The log-likelihood is determined as follows:    𝚤(𝜉, 𝜎, 𝑋) = ln ℒ(𝜉, 𝜎, 𝑋)   (10) 

𝚤(𝜉, 𝛿; 𝑋) =  −𝑁𝑢 ln 𝜎 − (
1

𝜉
+ 1) ∑ ln (1 +

𝜉

𝜎
𝑋𝑖)

𝑁𝑢
1   (11) 

Obtaining this function results in:       𝜕𝚤(𝜉,𝜎;𝑋)

𝜕𝜉
 = 0         (12) 

𝜕𝚤(𝜉,𝜎;𝑋)

𝜕𝜎
= 0        (13) 

We derive a system consisting of two equations and two unknowns, with the solution being the 
Maximum Likelihood estimators (𝜉𝑁𝑢

 , �̂�𝑁𝑢
). 

And for ℥=0, we have: 

𝑔(𝜒) =
1

𝜎
exp (−

𝜒

𝜎
)       (14) 

𝑙(0, 𝜎; 𝑋) = −𝑁𝑢𝑙𝑛𝜎 −
1

𝜎
∑ 𝑋𝑖

𝑁𝑢
𝑖=1      (15) 

Next, we derive the estimator as the empirical average of the excess values:    

𝛿𝑁𝑢 = ∑ 𝑋𝑖
𝑁𝑢

⁄
𝑁𝑢
𝑖=1        (16) 

Table 2 presents the scale and shape parameters estimates, as well as their 95% confidence intervals and 
covariance matrices. 

Table 2. ML estimates, confidence intervals(CI) and covariance matrices for shape and scale 
parameters of the GPD model fitted for maximum monthly temperature 

Scale           Shape 
Estimates                                                   3.88 -0.64 

   Standard error                                           0.74 0.14 
CI (2.42, 5.34)             (-0.91, -0.36) 

Estimated parameters covariance matrix 
Scale                                                  0.55 -0.10 
Shape                                                         0.019 

According to the information displayed in Table 2, it can be seen that the shape parameter is in a negative 
state, which classifies the Generalized Pareto Distribution (GPD) used in this analysis as of the Pareto 
II type. This parameter is notably close to zero, distinctly implying that the exponential distribution does 
not fit within this framework. To substantiate this conclusion, confidence intervals have been 
meticulously calculated and utilized, offering robust statistical support for the exclusion of the 
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exponential model. Further validation of the chosen models was carried out using the Quantile-Quantile 
(QQ) plot technique. The QQ plot specifically tailored for the Batna weather station displays a nearly 
perfect linear correlation, underscoring the appropriateness of the GPD type II model. This model 
effectively captures the nuances of the highest monthly temperatures, particularly with a set threshold 
of 25°C. The alignment of the data points along the linear trend in the QQ plot convincingly confirms 
that the GPD type II model is well-suited for analyzing the extreme temperature events recorded at the 
Batna station, ensuring accurate representation and analysis of the temperature extremes. 

Generalized Pareto distribution (scale=3.88, shape=-0.64) 

  
Fig 9. Estimated distribution  

4.1 Model validation 

The graph (Figure 10 ) clearly illustrates a positive correlation between statistical model quantiles and 
empirical quantiles, demonstrating that an increase in model quantiles leads to a corresponding increase 
in empirical quantiles. This relationship is underlined by the regression line, which indicates an 
approximate linear trend between these two variables. Furthermore, the 95% confidence intervals 
reinforce this observation, providing statistical assurance that the true value of the empirical quantities 
for a specific model quantile is likely to lie within the range specified by the grey bands. 

This analysis is corroborated by a second graph, which also compares model quantities with empirical 
quantities, confirming the existence of a similar positive relationship. As the regression line shows, the 
relationship between these quantities remains approximately linear. The 95% confidence intervals, 
illustrated by the grey bands, add a further layer of certainty, indicating that the true value of the 
empirical quantities for a given quantile lies with 95% probability within the defined interval. 

Together, these graphs suggest that the model provides a reliable prediction of empirical quantities, 
validating its effectiveness as a modeling tool. 

 
Fig 10. QQ plot for Batna station 
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4.2 GPD estimated yield 

The Maximum Likelihood (ML) estimation method was rigorously applied to determine return levels 
for various return periods of monthly maximum temperatures, the results being carefully recorded in 
Table 3. These results are further supported by 95% confidence intervals, rigorously calculated 
according to the profile probability method, reinforcing the reliability of the estimates. The return level 
is a crucial statistical measure, representing the upper quartile of the distribution. This metric quantifies 
the temperature values statistically predicted to exceed a predetermined threshold at regular intervals, 
called "return periods". The concept of return period is inversely related to the probability of exceeding 
the temperature threshold in a given year. For example, a return period of 100 years suggests that, on 
average, temperatures should exceed this specific level once every hundred years. This statistical 
framework is essential for assessing and mitigating the risks associated with increasing temperature 
extremes due to climate change. For practical implications, the data predict that temperatures are 
expected to exceed 30.96°C every 2 years, 31.03°C every 20 years, 31.045°C every 50 years, and 
31.049°C every 100 years. These projections are fundamental to urban planning, infrastructure 
development and emergency preparedness, providing a basis for designing strategies to cope with and 
adapt to these expected temperature extremes. 

Table 3. Monthly peak temperatures reach 9% (°C) using GPD. 

Return period Projected value of temperature level (in °C) 
2-years 30.96 

20-years 31.03 
50-years 31.045 
100-years 31.049 

 

5. CONCLUSION  

This study highlights an advanced approach to modeling temperature extremes at the Batna station using 
the Generalized Pareto Distribution (GPD), strategically applying various thresholds to enhance model 
accuracy and reduce bias in tail distributions. The main findings of this study are as follows: 

 By examining different threshold ranges, the analysis identifies the Pareto II type, particularly 
effective in capturing temperature dynamics above a 25°C threshold, thanks to its tail-limited 
behavior. Through iterative fitting of scale and shape parameters, stable thresholds were established, 
ensuring reliable model predictions. 

 Key findings include the identification of stable temperature thresholds, with average temperatures 
around 27.52°C, while values frequently exceeded 25°C, indicating consistency in temperature 
patterns. The station’s temperature distribution shows a negative skewness and non-normality, 
further supporting the use of GPD type II as validated by Quantile-Quantile (QQ) plots and stability 
analyses, which demonstrated the model’s accuracy in capturing extreme events. 

 The analysis of return levels for varying periods reveals a statistically supported framework to 
predict temperatures expected to exceed specific thresholds (e.g., 30.96°C every 2 years), critical 
for regional planning and infrastructure. These results provide valuable insights for managing 
climate-related risks, aiding urban planning and emergency preparedness efforts in response to 
increasing temperature extremes. 
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