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 Water is essential for ecological sustainability and human survival, 

necessitating effective management to meet rising global demands and 

address climate change. Traditional water supply monitoring methods 

are labor-intensive and slow, limiting real-time data acquisition and 

issue resolution. This paper presents QoW-Pro, an IoT-based water 

monitoring system that leverages AI algorithms to significantly enhance 

water quality assessments and leak detection. QoW-Pro enables real-

time data collection, predictive modeling, and anomaly detection, 

leading to improved decision-making in water resource management. 

The system demonstrates quantitative improvements in leak detection 

accuracy and water quality prediction, offering a scalable solution 

adaptable to both urban and agricultural settings. By combining IoT and 

AI, this research contributes to the sustainable management of water 

resources, ensuring their availability and quality for future generations. 
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1. INTRODUCTION 

Water is an essential resource for ecological sustainability and human survival, necessitating effective 

management strategies to address the increasing global demand and mitigate the impacts of climate 

change. Traditional water supply monitoring techniques, such as manual sampling and visual 

inspections, are labor-intensive, time-consuming, and often result in delayed responses to water quality 

issues. For example, manual water quality assessments can take several days to produce results, limiting 

the ability to respond to contamination events in real-time. Additionally, leak detection in traditional 
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systems frequently relies on acoustic or pressure-based methods that have a detection accuracy of 

approximately 70-80%, often failing to identify minor leaks promptly. 

In contrast, QoW-Pro, an IoT-based water monitoring system, leverages advanced Artificial Intelligence 

(AI) algorithms to significantly enhance the accuracy and efficiency of water quality assessments and 

leak detection. With its real-time data collection capabilities, QoW-Pro has shown an improvement in 

leak detection accuracy to over 94%, enabling quicker identification of potential issues in both urban 

and agricultural water networks. This represents a substantial enhancement over traditional methods, 

reducing water loss and operational costs while improving decision-making in water resource 

management. 

Despite advancements in water monitoring technologies, several challenges remain unresolved by 

existing methods, such as limited scalability, high operational costs, and difficulties in integrating real-

time data with predictive models. The objective of this research is to address these challenges by 

developing a scalable, cost-effective solution that combines IoT with AI. QoW-Pro aims to provide real-

time anomaly detection, predictive modeling for water quality, and a flexible system adaptable to diverse 

environments, ranging from urban water distribution networks to agricultural irrigation systems. By 

overcoming the limitations of traditional methods, this system contributes to more sustainable water 

resource management and ensures the availability and quality of water for future generations. 

2. RELATED WORK 

2.1 Conventional water supply monitoring techniques (Table 1) 

First this section provides a scholarly examination of established methodologies in water supply system 

monitoring. It presents a comprehensive review of research that utilizes hierarchical control strategies 

and optimization techniques, grounded in Lagrange duality theory, to enhance the regulation of water-

supply networks. 

In many cases, such methods not only allow for large economically feasible savings but also demonstrate 

computational efficiency while highlighting the importance of the advanced predictive control strategy 

for optimal water-supply network functioning. In addition, the sub-chapter considers the necessity to 

develop efficient water quality monitoring programs targeted for different goals, compliance 

monitoring, and mass transport estimation approaches. 

One study focuses on optimal online control for a water-supply network in the United Kingdom, 

emphasizing the reduction of control problem dimensionality through a hierarchical approach and 

utilizing an optimization technique based on Lagrange duality theory. The study showcases cost savings 

and computational efficiency in controlling water supply over a 24-hour period, highlighting the 

importance of predictive control strategies in optimizing water-supply network operations (Fallside & 

Perry, 1975). 

Another paper also insists on the need to develop and design an effective water quality monitoring 

program that is specific to the monitoring objectives, trend evaluation technique, compliance 

monitoring, and mass transport estimation approaches. Therefore, monitoring needs to be linked to 

predictive purposes and data use in management and must be done efficiently and effectively which 

involves strategic, spatially oriented data collection design based on specific monitoring objectives, as 

discussed by Paul H. Whitfield (1988). 

Chrysanthus (1998) explores principles essential for mitigating environmental degradation in water and 

land resources, underscoring the interconnectedness of economic, political, social, and administrative 

structures with water resources globally. The paper advocates for timely environmental information and 
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GIS technology in groundwater quality management, emphasizing quality assurance and control in 

water resource projects.  

Other study delves into the application of these methods to detect water seepage issues, providing 

insights into the techniques used for monitoring water supply systems. Specifically, the paper details the 

utilization of resistivity and self-polarization methods to assess water seepage, highlighting their 

effectiveness in identifying potential problems within the water supply system (Titov et al., 2000).  

Table 1. Summary of Various Conventional Water Supply Monitoring Techniques 

Aspect Geographical Focus 
Technologies & 

Methods 
Data Management 

Strengths and 

Limitations 

Fallside & 

Perry 

(1975) 

United Kingdom 

Hierarchical optimization 

approach with 6 state 

variables and 10 control 

inputs using Lagrange 

duality theory 

Reduction to 6 state 

variables, 10 control 

inputs, and 6 

disturbances for optimal 

control 

Strengths: Cost savings, 

computational efficiency, 

suitable for optimal online 

control. Limitations: 

Dimensionality problem, 

complexity in 

implementation 

Whitfield 

(1988) 

Zurich Switzerland, 

San Sebastian Spain, 

England and Wales 

Water Industry, 

Chetumal Mexico 

Water balance 

calculations, extended 

period simulation 

methodology for 

evaluating water losses 

Sensitivity to demand 

patterns, pressure 

variations, hydraulic 

network modelling 

High accuracy in water 

balance, challenges in data 

collection and management 

Chukwuma 

(1998) 
Global perspective 

Utilizes GIS, 

environmental 

information systems, 

expert systems, relational 

database, spreadsheet 

utility, hypertext 

Integration of procedures 

and systems for data 

management  

Strengths: Use of GIS for 

spatial analysis, decision-

making support. 

Limitations: High initial 

costs, data acquisition 

challenges 

Titov et al. 

(2000) 

Petergoph fountain 

water supply system 

Resistivity and self-

polarization methods 
N/A 

Effective detection of 

water seepage, enhances 

monitoring and 

maintenance 

Westphal 

et al. 

(2003) 

Boston Metropolitan 

Region 

Decision Support System 

with models and 

optimization algorithms 

Real-time hydroclimatic 

data, optimization 

algorithms 

Enhances water quality, 

flood control, revenue 

maximization; relies on 

short-term climate 

forecasts 

Eker & 

Kara 

(2003) 

Gaziantep Turkey 

Hydraulic models, 

simulation control using 

polynomial optimization 

method 

Modelling and 

simulation of water 

systems 

Focus on control strategies, 

optimization; complexity 

of models, need for 

accurate data 

Poulakis et 

al. (2003) 

Leakage detection in 

water distribution 

systems 

Statistical system 

identification, probability 

density functions 

Update of parameter 

values and uncertainties 

Effective leakage 

detection, considers 

uncertainties; sensitivity to 

experimental data errors 

Almandoz 

et al. 

(2005) 

Zurich Switzerland, 

San Sebasti´an Spain, 

England and Wales 

Water Industry, 

Chetumal Mexico 

Water balance 

calculations, extended 

period simulation 

methodology 

Sensitivity to demand 

patterns, pressure 

variations, hydraulic 

network modelling 

High accuracy in water 

balance, significant 

uncontrolled flow due to 

maintenance and metering 

issues 

The DSS operates within a modular framework, integrating hydrologic models with hydraulic and 

optimization modules to enable objective decision-making. It predicts watershed runoff, streamflow, 

and reservoir yield using hydrologic models and regression equations. The system optimizes reservoir 
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operations, aqueduct transfers, diversions, and controlled releases based on user input, hydrologic 

modelling, and system optimization (Westpal et al., 2003).  

Eker and Kara (2003)  describe a water supply system with pumping stations, pipelines, and reservoirs, 

emphasizing the importance of understanding system behaviour for optimization. It highlights the use 

of hydraulic models to represent active and passive elements, such as pumps and pipes, and discusses 

the simulation of water supply systems to facilitate control strategies.  

Poulakis et al. (2003) involve statistical system identification to update model parameters based on 

measured data, quantifying uncertainties using probability density functions. It optimizes model 

parameters to minimize prediction errors and identify leakage locations and severity.  

Other scientifics distinguish between physical losses in mains and service connections and the volume 

of water consumed but not measured by meters. It emphasizes the importance of minimizing leakage in 

water networks due to quality, operational, and cost implications (Almandoz et al. 2005).  

2.2 IoT for water supply monitoring (Table 2) 

This section transitions into the era of the Internet of Things (IoT), illustrating how this technology 

enhances water level management and leakage detection in distribution systems. It reviews several 

research studies on the application of IoT for real-time monitoring, leak detection, flow rate calculations, 

and automated alerts. The discussion emphasizes the utility of low-cost wireless sensor networks in 

optimizing water network monitoring and the significance of high-resolution sensor data in the accurate 

detection of leaks. 

The research paper "SMART2L: Smart Water Level and Leakage Detection" by Kadar et al. (2018) 

focuses on leveraging IoT technology to automate water level management and leakage detection in 

water distribution systems. The SMART2L system integrates sensors like e-tape for water level 

monitoring and leakage detection, alerting users via email notifications and controlling the water pump 

automatically. This system aims to prevent Non-Revenue Water wastage by enabling real-time 

monitoring, leak detection, flow rate calculation, and alert notifications, contributing to improved water 

resource management and conservation.  

In another study by Sadeghioon et al. (2018), a novel method for water pipeline failure detection is 

proposed using distributed relative pressure and temperature measurements, along with anomaly 

detection algorithms. The system, validated through field trials, demonstrates accurate leak detection, 

with the anomaly detection algorithm showing superior sensitivity and specificity. This research 

emphasizes the potential of low-cost wireless sensor systems for efficient water network monitoring and 

the importance of high-resolution sensor data for effective leak detection.  

Sarangi (2020) addresses water conservation challenges in the paper "Smart Water Leakage and Theft 

Detection using IoT." This study highlights the impact of water leakage and theft on water scarcity and 

presents an IoT-based system for real-time water leakage detection. By utilizing water flow sensors and 

wireless communication technologies, the system can monitor water flow rates at different points in a 

pipeline network, offering a comprehensive solution to address water management challenges 

effectively.  

Yuniarti et al. (2021) conducted study focuses on creating a water flow monitoring device based on IoT 

technology to monitor water flow speed continuously, addressing the uncertainty of water debit in Pico 

hydro power plant equipment. The system's simplicity, cost-effectiveness, and real-time monitoring 

capabilities were highlighted as key advantages, showcasing successful monitoring of water flow speed 

and data visualization for analysis.  
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Nadipalli et al. (2021) introduces an IoT-based smart water meter system for water conservation. It 

calculates consumption, sets limits, and controls supply if exceeded. Users access data via an app or 

cloud server. Components include ESP8266, flow sensor, and cloud-based server. The system promotes 

transparent billing and efficient water usage, offering a practical solution for conservation.  

Table 2. Summary of various IoT for Water Supply Monitoring Studies 

Aspect Detection Methodology Technological Implementation Scalability and Deployment 
Results and 

Impact 

Kadar et al. 

(2018) 

Based on relative 

pressure sensor and 

temperature difference 

measurements with an 

anomaly detection 

algorithm for leak 

differentiation. 

Utilizes wireless sensor nodes 

with relative pressure sensors 

and temperature sensors for 

non-invasive monitoring. 

Offers scalability and 

continuous monitoring 

capabilities suitable for 

large area pipeline 

monitoring. 

Achieved 98.45% 

accuracy in 

identifying known 

leaks, 

outperforming 

traditional methods. 

Sadeghioon 

et al. 

(2018) 

Based on the law of 

conservation of mass, 

utilizing water flow 

sensors to monitor 

incoming and outgoing 

pressure in pipelines. 

Implements Arduino 

microcontrollers, Zigbee and 

LoRa communication 

protocols for data 

transmission. 

Designed for city-level 

implementation, with 

sensors spread across the 

city. 

Successful 

implementation 

demonstrated 

through web-based 

interface for real-

time monitoring. 

Sarangi 

(2020) 

Integrates e-tape water 

level sensor and leakage 

sensor for real-time 

monitoring and 

detection. 

Uses Arduino Yun as the 

main controller, sensors, 

valves, and pumps for 

automation. 

Designed for small-scale 

liquid control, aims to 

reduce manpower and 

power consumption. 

Successfully detects 

leaks, monitors 

water levels, and 

calculates flow rates 

reducing NRW and 

operational costs. 

Yuniarti 

(2021) 

Designing a water flow 

monitoring device 

(WAFLOW-MT) using 

IoT for Pico hydro 

power plants. 

Utilizes Arduino UNO R3, 

ESP8266 IoT module, YF-

S201 water flow sensor, and 

power supply. 

Monitors river flow 

speed, sending data to 

thingspeak.com for 

analysis over 6 days. 

Offers real-time 

monitoring, cost-

effectiveness and 

simplicity for Pico 

hydro power plant 

operations. 

Nadipalli et 

al. (2021) 

Utilizes a flow sensor to 

measure water 

consumption, sets 

threshold values and 

controls or stops supply 

if consumption exceeds 

the set limit. 

Incorporates ESP8266 for 

internet connectivity, a flow 

sensor for water flow 

measurement and a cloud-

based server for data 

monitoring. 

Designed for small cities 

with limited infrastructure 

and investment capacity. 

Provides real-time 

monitoring of water 

consumption, 

transparent billing, 

and efficient water 

usage. 

Fauzy et al. 

(2021) 

Utilizes sensors like 

Ultrasonic HC-SR04 and 

Water Flow for 

monitoring water 

movement. 

Designed using Arduino 

SIM800L for remote control 

and sensors for water level 

and clarity. 

System can adjust water 

level accurately and 

control water flow 

suitable for real-time 

monitoring. 

Efficient water 

management, 

reduced wastage 

and improved 

monitoring 

capabilities. 

Tina et al. 

(2022) 

Compares water flow at 

source and destination to 

detect leaks; utilizes 

water flow sensors 

integrated with Arduino. 

Utilizes Arduino Uno, water 

flow sensor, node MCU, and 

LCD screen display. 

Prototype with sensors at 

source and destination 

points for detecting leaks. 

Enables efficient 

utilization of water 

resources through 

IoT-based detection 

system. 

Fauzy et al. (2021) discuss the Implementation of IoT Water Saving Based on Smart Water Flow System 

focuses on designing an IoT system for monitoring water movement with variables like water acidity, 

temperature, and clarity, controllable remotely. The system aims to promote water conservation by 
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automating water changes, providing real-time monitoring, and addressing pollution concerns in urban 

areas.  

Lastly, Tina et al. (2022) present a study on Water Leakage Detection System Using Arduino, 

emphasizing the role of IoT devices in detecting water leaks in pipelines and sending alerts to prevent 

water wastage. The research highlights various projects focusing on water leakage detection using IoT 

devices, sensors, Arduino boards, and microcontrollers, showcasing the efficiency of IoT-based water 

leakage detection systems and the need for further research in managing water resources effectively.  

2.3 AI for water supply monitoring  

The final section of the chapter brings to light how advanced AI techniques are making a significant 

impact on water supply monitoring. It covers exciting research that introduces machine learning models, 

wavelet analysis, statistical features, and fusion methods tailored for spotting leaks in pipelines. These 

studies not only highlight AI's role in sharpening leak detection but also in predicting potential leaks 

and enhancing the management of our precious water resources more efficiently (Tables 3, 4, and 5).  

Lang et al. (2017) discuss the application of the Local Mean Decomposition (LMD) method for 

decomposing non-stationary and non-linear signals into Primary Components (PFs) to extract useful 

signal change information. The study introduces an Improved LMD Noise Cancellation method for 

separating desired signals from noise, particularly in scenarios like oil pipeline leak detection. The Least 

Squares Twin Support Vector Machine (LSTSVM) method achieves an accuracy of 94.44 percent in 

recognizing different working conditions and the size of leakage apertures in the pipeline, outperforming 

traditional SVM methods.  

The research by Zadkarami et al. (2017) focuses on pipeline leak diagnosis using a fusion technique that 

combines wavelet and statistical features with the Dempster–Shafer classifier. Statistical and wavelet 

features extracted from inlet pressure and outlet flowrate signals achieve classification accuracies of 

64.56 percent and 86.94 percent respectively. The fusion of these classifiers using the Dempster–Shafer 

technique achieves a high accuracy of 95.11 percent. The study emphasizes the importance of multi-

sensor data fusion for accurate and reliable results in pipeline leak detection, showcasing the 

effectiveness of combining different classifiers to enhance diagnostic performance.  

Zhou et al. (2019) present an innovative approach to pipeline leak diagnosis. The study introduces an 

improved SLMD method that selects Principal Features (PFs) by incorporating a reference signal, 

enhancing the accuracy of leak detection. By decomposing the upstream pressure signal into PFs using 

SLMD and correlating them with a reference signal, the study distinguishes between noise and leak 

signals effectively. The research successfully detects leaks, locates them accurately, and highlights the 

potential of ISLMD and CNN in improving pipeline leak detection systems.  

Alves Coelho et al. (2020) focus on developing a sophisticated system for precise water leak detection 

using machine learning and real-time sensor data. Machine learning algorithms are employed to analyse 

data in real-time, achieving high accuracy levels ranging from 70 percent to 85 percent in leak detection 

scenarios. The study demonstrates the potential of IoT technologies and machine learning in enhancing 

water supply system efficiency and reliability.  

Fan et al. (2021) present a novel approach for leak detection in water distribution networks using a 

machine learning model. The study utilizes an Autoencoder (AE) model to extract spatial patterns from 

pressure data collected by monitoring sensors in the water supply network. By incorporating multiple 

independent detection attempts using a voting strategy, the accuracy of leak detection improved 

significantly, highlighting the effectiveness of machine learning models in enhancing leak detection in 

water supply networks.  
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Lee and Kim (2023) focus on leak detection in water pipelines using machine learning models based on 

vibration sensor data. Different experiments demonstrate the effectiveness of machine learning models 

in accurately classifying different types of leaks, emphasizing the importance of precise data labelling 

and feature selection for optimal performance in water pipeline leak detection systems.  

Głomb et al. (2023) explore anomaly detection in water distribution systems using various methods and 

machine learning algorithms. The study highlights the challenges of parameterization and the need for 

further research to improve detector performance in leak classification scenarios.  

Table 3. Summary of Research on Leak Prediction in Water Distribution Networks 

Aspect Leak Detection Data Experimental Models Pipe Material Experimental Results 

Lang et al. 

(2017) 

Pressure signals 

collected at the pipeline 

ends. 

Improved Local Mean 

Decomposition (LMD) 

Signal Analysis method 

utilized. 

Elastic material used 

in the pipeline model. 

Achieved an accuracy of 

94.44% in recognizing 

different working 

conditions and accurately 

locating leakage points 

using Least Squares Twin 

Support Vector Machine 

(LSTSVM). 

Zadkarami 

et al. 

(2017) 

The data used includes 

inlet pressure and outlet 

flow signals analysed 

using statistical and 

wavelet features. 

A novel image 

recognition approach 

using a CNN, 

specifically AlexNet. 

The research stresses 

accurate leak 

detection in water 

supply pipelines. 

Experimental findings 

demonstrate the 

effectiveness of signal 

processing techniques like 

generalized cross-

correlation analysis in 

accurately detecting and 

locating leaks. 

Zhou et al. 

(2019) 

The data used consists 

of pressure signals 

collected from water 

pipelines. 

The CNN model 

specifically AlexNet 

effectively detects 

various leak apertures. 

Focuses on water 

supply 

pipelines. 

The study demonstrates 

accurate leak detection and 

location through signal 

processing and image 

recognition techniques. 

Coelho et 

al. (2020) 

Small data set with 21 

training leaks and 25 

testing leaks. ML 

models used: Random 

Forest, Decision Trees, 

KNN.  

Trained ML algorithms: 

Random Forest showed 

the best performance at 

approximately 85% 

accuracy. 

Focus on water 

distribution pipelines 

in public and private 

domains. 

The system prototype 

tested with 3703 data 

entries from three sensors 

achieving 75% accuracy in 

detecting leaks. 

Fan et al. 

(2021) 

The data used includes 

water pressure data 

under both leaking and 

non-leaking conditions. 

100% accuracy attained 

by the ANN model for 

classification. 

N/A 

AE model achieved around 

50% accuracy for a 

balanced dataset. 

Lee & 

Kim 

(2023) 

Water pipeline leak 

vibration data. This 

dataset consists of 

30000 cases. 

Utilizes the KNearest 

Neighbour (KNN) 

algorithm for leak 

detection. 

Discusses metal pipes 

like ECSP, LECSP, 

CIP, DIP, GSP, CP, 

and SSP. 

KNN model outperforms 

other models in terms of 

accuracy and 

computational efficiency. 

Glomb et 

al. (2023) 

Focuses on leak 

detection using 

vibration sensor data 

with classification 

based on frequency 

ranges and vibration 

magnitudes detected. 

Employs various 

models like XGBoost, 

MLP, Random Forest, 

Light GBM, CatBoost, 

Extra Trees, Decision 

Tree, and Gradient 

Boosting. 

Covers non-metallic 

pipes such as PVC, 

IRWP, PE, and HP. 

Random Forest model 

emerges as the most 

efficacious showing 

superior performance. 

Leu and Bui (2016) develop a Bayesian network model for leak prediction that skillfully integrates 

expert knowledge with empirical data. Their approach allows for the dynamic updating of leak 



                                         Journal of Renewable Energies 27 (2024) 243 – 281 

250 

probabilities in water distribution networks, facilitating more precise and proactive leakage control 

strategies. This method is particularly beneficial for water utilities aiming to optimize their leakage 

management practices.  

Cody et al. (2019) investigate the effectiveness of linear prediction methods in detecting leaks within 

noisy environments. Their study reveals that this approach can accurately localize leaks using shorter 

data segments than traditional methods, making it ideal for ongoing, real-time monitoring in water 

distribution systems.  

Cody and Narasimhan (2020) demonstrate the application of linear prediction combined with cross-

correlation techniques for monitoring leaks in water distribution networks. Their field-tested approach 

enhances the detection and localization of leaks, proving effective for large-scale use and suitable for 

continuous monitoring due to its efficient data use.  

Kizilöz (2021) explores artificial neural network (ANN) models to determine the monthly leakage rates 

in aging water distribution systems, factoring in the effects of pressure. His study utilizes data 

standardized by Z-scores and confirms that incorporating pressure considerations enhances model 

accuracy. This supports the use of advanced pressure management techniques to reduce water loss.  

Şahin and Yüce (2023) introduce a novel method using Graph Convolutional Networks (GCN) for 

predicting leaks in pipeline networks. Their research highlights the GCN model's effectiveness in 

recognizing complex network patterns, demonstrating a significant improvement over traditional models 

with an accuracy rate of 94\%. This method shows promise for extensive adoption in pipeline 

management and environmental conservation.  

Table 4. Summary of Research on Leak Prediction in Water Distribution Networks 

Aspect Leak Detection Data Experimental Models Pipe Material Experimental Results 

Leu & Bui 

(2016) 

Data included factors 

like pipe conditions, 

construction activities, 

ground movement, 

pressure surges, etc., 

with a dataset of 2633 

cases. 

Bayesian network (BN) 

learning model using the 

expert structural 

expectation-maximisation 

(ExSEM) algorithm. 

PB, PVC, SSP 

Prediction accuracy of 

84.6%, identified crucial 

factors affecting water 

leakage. 

Cody et al. 

(2020) 

Data from field 

implementation of 

linear prediction for 

leak monitoring. 

Linear Prediction (LP), 

Principal Component 

Analysis (PCA), 

Multivariate Gaussian 

Mixture Model (GMM) 

Fluid-filled 

pressurized pipe 

Effective detection and 

localization of leaks, 

reduction in data 

transmission volume, long-

term monitoring capability. 

Cody & 

Narasimhan 

(2020) 

Acoustic signals 

collected from a 

pressurized water pipe 

system. 

All-pole model described by 

𝐻(𝑧) = 𝐺 ∙ (1 − ∑ 𝑧𝑎
𝑘 − 𝑘 

Fluid-filled pipes 
Accuracy of 97.62% and 

97.32% for leak detection. 

Kizilöz 

(2021) 

Z-score standardized 

monthly data for 2016- 

2019. 

Artificial Neural Network 

(ANN) models. 
Polyethylene pipes 

Improved model accuracy 

with data standardization; 

best model achieved with 

TSIV/TNL-ANP-MAN-

MDN combination; R2 

value of 0.72. 

Sahin & 

Yüce 

(2023) 

Experimental data 

involving pressure 

sensors and flow 

meters to simulate 

leakages. 

GCN and SVM 

performance:  

GCN achieved 94%,  

SVM achieved 87%. 

PVC Pipes 

94% accuracy, 87.66% 

accuracy for SVM, 81% 

F1-score for leakage 

detection, 100% F1-score 

for normal situation 

detection. 
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Now shifting focus from predicting leaks to work related to predicting water quality (Table 5). Gunda 

et al. (2019) describe an AI-based mobile app for monitoring water quality, specifically bacterial 

contamination, using convolutional neural networks and smartphone cameras. This highly accurate 

method is published in the Journal of The Electrochemical Society.  

The article by Rajaee al. (2020) reviews AI models for predicting river water quality, emphasizing their 

high accuracy and potential to improve water monitoring systems. It was published in Chemometrics 

and Intelligent Laboratory Systems.  

Al-Adhaileh & Alsaade (2021), in their work "Modelling and prediction of water quality by using 

artificial intelligence", discuss how AI techniques can significantly reduce costs and improve the 

prediction accuracy of water quality in both drinking water and wastewater treatment systems. Their 

study highlights AI's role in environmental management, offering insights into the practical applications 

of AI in maintaining water quality.  

Biraghi et al. (2021) - In "AI In Support to Water Quality Monitoring," the authors explore integrating 

artificial intelligence with citizen science to enhance water quality monitoring across global water 

bodies. Their study focuses on pre-filtering volunteer geographic information for lake monitoring, using 

AI to automatically detect harmful phenomena such as algae and foams in uploaded images. This 

approach aims to reduce the manual checking workload, thereby streamlining the process for 

environmental agencies.  

Table 5. Summary of Research on Water Quality Prediction 

Aspect Leak Detection Data Experimental Models Pipe Material Experimental Results 

Gunda et 

al. (2019) 

AI-based mobile 

application for water 

monitoring 

CNN Canada (Waterloo) 

High accuracy in detecting 

bacterial contamination. 

CNN: 99.99% 

Rajaee et 

al. (2020) 

AI models for river 

water quality 

prediction 

ANN, GP, SVM, 

various 

hybrid models 

Rivers in Iran 

High predictive accuracy 

for ANN and hybrid 

models. ANN: 93%, Hybrid 

models: 95%+ 

Al-

Adhaileh 

& Alsaade 

(2020) 

ANFIS model for 

water quality index 

prediction  

ANFIS, FFNN 
Rivers and lakes in 

India 

ANFIS model showed high 

prediction accuracy.  NFIS: 

92%, FFNN: 89% 

Biraghi et 

al. (2021) 

SIMILE project for 

lake water monitoring 
CNN, Faster R-CNN 

Lakes in Italy (Lugano, 

Maggiore, Como) 

CNN and Faster R-CNN 

used for detecting algae and 

foams. CNN: 90%, Faster 

R-CNN: 85% 

2.4 Critical analysis 

Traditional water supply monitoring techniques, such as manual sampling and hierarchical control 

strategies, have been widely used in water management systems. For example, optimization methods 

grounded in Lagrange duality theory have demonstrated cost savings and computational efficiency in 

controlling water networks. However, these approaches often lack the flexibility to adapt to real-time 

changes in water quality or demand and can struggle to detect minor leaks, especially in complex 

environments. 

The integration of IoT technologies into water monitoring systems has significantly improved real-time 

data acquisition and automated leak detection. Studies on IoT-based solutions have shown the utility of 

low-cost wireless sensor networks in enhancing the monitoring of water networks. For instance, the 

SMART2L system, which utilizes sensors like e-tape for water level monitoring, achieved a leak 
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detection accuracy of approximately 85% in small-scale implementations. Despite these advancements, 

challenges remain in scaling these solutions for larger urban or agricultural applications, as well as in 

maintaining sensor reliability and data integration from diverse sources. 

In contrast, the QoW-Pro system leverages a more robust IoT and AI-based framework to address these 

limitations. By using pulse-based flow sensors and advanced AI algorithms for predictive modeling, 

QoW-Pro achieves a leak detection accuracy exceeding 94%, surpassing the performance of 

conventional IoT solutions and traditional methodologies. Additionally, the system's scalable 

architecture enables its application in both small and large-scale water distribution networks, providing 

more comprehensive and cost-effective monitoring capabilities. 

AI-based techniques have also gained prominence in water monitoring, with machine learning models 

like Local Mean Decomposition (LMD) and Convolutional Neural Networks (CNNs) demonstrating 

significant potential for leak detection. For example, studies using LMD reported a leak detection 

accuracy of 94.44%, while CNNs achieved around 85% accuracy in specific scenarios. However, these 

AI-driven methods often require extensive training datasets and are prone to performance degradation 

in data-scarce environments. QoW-Pro overcomes these challenges by incorporating a Random Forest 

model, which is not only efficient in handling diverse data sources but also robust against noise and 

outliers, enhancing its predictive accuracy for water quality assessments and leak detection. 

Furthermore, the cost implications of deploying AI and IoT-based solutions remain a critical concern. 

Many existing systems involve high setup and maintenance costs due to the need for specialized 

hardware and complex data processing algorithms. QoW-Pro addresses these issues through its use of 

affordable sensor technology and open-source software platforms, reducing both the initial investment 

and ongoing operational costs. The system's adaptability to various environments, from urban water 

supply networks to agricultural irrigation, also ensures a higher return on investment compared to 

traditional and existing IoT-based methods. 

3. TECHNOLOGIES FOR WATER MONITORING 

3.1 Hardware components 

ESP8266 

 Justification: The ESP8266 was chosen as the main microcontroller for its exceptional balance of 

affordability, performance, and ease of integration into IoT applications. It features a 32-bit 

Tensilica L106 microcontroller, supports Wi-Fi connectivity, and operates at speeds up to 160 

MHz with 4 MB flash memory. 

 Advantages: Compared to other microcontrollers like the Arduino Uno or Raspberry Pi, the 

ESP8266 is more cost-effective and power-efficient, making it ideal for battery-operated IoT 

systems. It also has built-in Wi-Fi capabilities, which reduces the need for additional hardware 

components and simplifies the setup for wireless data transmission. These features make the 

ESP8266 a preferred choice in IoT projects that require seamless connectivity and data transfer. 

 Reference: The popularity of the ESP8266 in IoT projects is well-documented due to its low cost 

and versatility in wireless applications, as noted in Components 101. 

Water Flow Sensor 

 Justification: The water flow sensor was selected for its ability to provide precise flow rate 

measurements using a magnetic hall effect sensor and pinwheel mechanism. 
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 Advantages: Compared to other flow sensors like ultrasonic or differential pressure sensors, this 

sensor is more straightforward to install and calibrate in pipeline systems. It offers a good balance 

between cost and accuracy, making it suitable for both small-scale and large-scale 

implementations. 

 Reference: The effectiveness of magnetic flow sensors in detecting minor flow rate changes has 

been highlighted in various studies (like in How2Electronics), supporting their application in 

water monitoring systems. 

PH Sensor 

 Justification: The PH-4502C sensor was chosen due to its high precision and compatibility with 

Arduino platforms, which are commonly used in water quality monitoring applications. 

 Advantages: This sensor provides accurate pH readings with a simple interface, making it more 

user-friendly and cost-effective compared to other laboratory-grade pH meters. It is also durable 

and suitable for continuous monitoring in various water conditions. 

 Reference: The reliability and affordability of the PH-4502C for environmental monitoring have 

been demonstrated in multiple field studies (like in Tierney (2023)). 

Turbidity Sensor 

 Justification: A turbidity sensor was included to measure the cloudiness of the water, which is a 

critical indicator of water quality and the presence of suspended particles. 

 Advantages: This optical sensor type offers a direct and fast method for assessing water clarity 

compared to more complex methods like spectrophotometry. It is also relatively low-cost, making 

it a practical choice for real-time monitoring systems. 

 Reference: Optical turbidity sensors are widely recognized for their efficiency in providing quick 

water quality assessments, especially in remote sensing applications (Huynth, 2023).  

TDS Sensor 

 Justification: The Total Dissolved Solids (TDS) sensor measures the concentration of dissolved 

minerals in the water, which is vital for determining its quality. 

 Advantages: This sensor is favored for its accuracy in detecting water salinity and mineral content 

at a lower cost compared to more sophisticated conductivity meters. Its simplicity makes it 

suitable for integration into IoT-based water monitoring setups. 

 Reference: TDS sensors are commonly used in water purification systems due to their reliability 

in measuring water quality parameters, as indicated by industry standards (Vilik, 2023).  

Temperature Sensor 

 Justification: The DS18B20 temperature sensor was chosen for its high precision and digital 

output, which ensures accurate temperature measurements essential for water quality analysis. 

 Advantages: Unlike analog temperature sensors, the DS18B20 offers a digital interface with a 

wide range of operating temperatures, making it more reliable in various environmental 

conditions. Its 1-Wire communication protocol simplifies data transmission with minimal wiring. 

 Reference: The DS18B20’s robustness and ease of integration into embedded systems make it a 

popular choice for IoT applications, as highlighted in numerous technical evaluations Nettigo, 

2023).  
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GSM SIM800L 

 Justification: The SIM800L module enables cellular communication for remote monitoring, 

making it possible to transmit data even in areas without Wi-Fi connectivity. 

 Advantages: Compared to other GSM modules like the SIM900, the SIM800L is more compact 

and power-efficient, which is ideal for battery-operated IoT devices. It supports multiple 

communication protocols (voice, SMS, GPRS), providing versatility for real-time data 

transmission. 

 Reference: The SIM800L is widely adopted in IoT projects for its reliable cellular communication 

capabilities and low power consumption (Marsian, 2023).  

Solenoid Valve 

 Justification: The solenoid valve is used to control water flow in response to detected anomalies, 

such as leaks or quality issues. 

 Advantages: Compared to manually operated valves, the 12V solenoid valve offers automated 

control and quick response, which is critical for real-time leak management. It is durable and 

well-suited for integration with digital control systems. 

 Reference: Solenoid valves are commonly used in fluid management systems due to their 

reliability and ease of automation, as supported by industry use cases (GitHub, 2023).  

Relay 

 Justification: A relay module was included to switch high-power circuits on or off based on low-

power control signals from the microcontroller. 

 Advantages: Relays provide electrical isolation between the control system and the high-power 

load, which enhances safety and prevents electrical faults. Compared to other switching 

mechanisms, relays are more reliable in industrial applications. 

 Reference: Relay modules are a standard component in automation and control systems for their 

efficiency in handling high-power operations with low-power commands. 

3.2 Software components 

The software components in the QoW-Pro system are crucial for efficient data management, real-time 

monitoring, and anomaly detection. Below is a detailed breakdown of each software's specific role in 

the system and its contribution to enhancing the accuracy and functionality of the water monitoring 

process. 

3.2.1 Visual Studio Code (VS Code) 

 Role in the System: Visual Studio Code serves as the primary development environment for writing 

and debugging the code used in the QoW-Pro system. It is utilized for developing the software logic 

that handles data processing and system control functions. 

 Data Management and Anomaly Detection: The code for data handling, sensor integration, and 

preliminary data analysis is developed in VS Code, ensuring that the system can efficiently process 

incoming sensor data. It also helps in writing scripts that trigger alerts when anomalies are detected 

in the water quality or flow rates. 
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 Utility: The extensive library support and debugging tools in VS Code make it ideal for developing 

robust, scalable software applications that interact with multiple sensors and data streams 

(Microsoft).  

3.2.2 Arduino IDE (Integrated Development Environment) 

 Role in the System: The Arduino IDE is used to program the microcontrollers (such as ESP8266) 

that interact with various sensors in the QoW-Pro system. It plays a critical role in the firmware 

development that enables real-time data acquisition from sensors deployed in the water monitoring 

setup. 

 Data Management and Anomaly Detection: Through the Arduino IDE, the microcontrollers are 

programmed to read data from sensors, convert it into digital signals, and transmit it to the cloud 

for analysis. The firmware also includes logic for initial anomaly detection directly on the hardware 

level, allowing for immediate response to critical issues. 

 Utility: The simplicity and compatibility of the Arduino IDE with a wide range of microcontrollers 

make it an essential tool for real-time data acquisition and embedded system development. 

3.2.3 Flutter 

 Role in the System: Flutter is used for developing the mobile application that provides a user-

friendly interface for interacting with the QoW-Pro system. This app allows users to access real-

time water quality data, receive alerts, and control various aspects of the monitoring setup. 

 Data Management and Anomaly Detection: The Flutter-based app fetches processed data from the 

cloud and displays it to users in a clear and intuitive manner. It also plays a key role in delivering 

instant notifications to users when anomalies are detected, ensuring timely action to address water 

quality or leak issues. 

 Utility: Flutter's cross-platform capabilities enable the creation of a consistent mobile application 

that works seamlessly on both Android and iOS devices, enhancing user engagement and 

accessibility. 

3.2.4 ThingSpeak (Cloud Platform) 

 Role in the System: ThingSpeak is employed as the primary cloud platform for data collection, 

storage, and real-time visualization. It gathers data from the IoT sensors and provides tools for basic 

data analysis and alert generation. 

 Data Management and Anomaly Detection: The platform is responsible for processing sensor data 

to identify trends and anomalies. If a significant deviation from the expected values is detected, 

ThingSpeak triggers automated alerts and sends notifications to the connected mobile application. 

 Utility: ThingSpeak's integration with MATLAB allows for advanced data analysis and 

visualization, making it a powerful tool for handling large datasets generated by the QoW-Pro 

system. 

3.2.5 Firebase (Backend Infrastructure) 

 Role in the System: Firebase serves as the backend infrastructure for the QoW-Pro system, 

managing real-time data synchronization, user authentication, and cloud-based storage for 

historical data. 
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 Data Management and Anomaly Detection: Firebase stores processed data for in-depth analysis 

and historical reference. It also supports real-time data updates and provides a reliable framework 

for implementing anomaly detection algorithms using machine learning models. 

 Utility: Firebase's scalability and real-time database capabilities make it an essential component for 

ensuring continuous monitoring and quick response to any detected issues in the water distribution 

network. 

3.2.6 Django (Web Framework) 

 Role in the System: Django is used as the web framework to create an API that interfaces with the 

machine learning models and manages communication between the cloud platforms and the mobile 

app. 

 Data Management and Anomaly Detection: It processes incoming data from Firebase, runs machine 

learning algorithms to predict potential leaks or water quality issues, and returns the analysis to the 

mobile app. Django also handles anomaly detection by identifying irregular patterns in the sensor 

data and generating appropriate alerts. 

 Utility: Django's robust framework supports the integration of AI models and ensures that the 

backend processing is efficient and secure, facilitating the accurate detection of anomalies in real-

time. 

3.2.7 Machine Learning Algorithms (Random Forest Model) 

 Role in the System: The Random Forest model is implemented within the Django framework to 

enhance predictive analytics for leak detection and water quality assessment. 

 Data Management and Anomaly Detection: This machine learning model analyzes historical and 

real-time data to identify patterns and predict potential system failures or water quality issues with 

high accuracy. It significantly improves anomaly detection by learning from past data and adapting 

to new information as it becomes available. 

 Utility: The Random Forest model's ability to handle noisy data and its robustness against 

overfitting make it highly suitable for the dynamic conditions encountered in water monitoring 

systems. 

3.2.8 Integration of Software Components 

The software components of the QoW-Pro system are tightly integrated to ensure smooth data flow and 

efficient operation: 

 Data Collection: Sensors gather data and transmit it to the microcontroller, which sends the data to 

ThingSpeak for initial analysis and storage. 

 Data Processing: ThingSpeak and Firebase process the incoming data, identify patterns, and trigger 

alerts when anomalies are detected. Django retrieves this data from Firebase, runs predictive 

models for deeper analysis, and ensures that the mobile app receives real-time updates. 

 Anomaly Detection: The integrated machine learning algorithms in Django enhance the anomaly 

detection process by analyzing sensor data for inconsistencies and predicting future system failures. 

 User Interaction: The Flutter mobile app displays real-time data, alerts users about anomalies, and 

allows them to control the system remotely. 
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4. OPTIMIZING REAL-TIME LEAK DETECTION AND WATER QUALITY 

PREDICTION SOLUTIONS 

In this section, we aim to optimize real-time leak detection and water quality prediction through the 

integration of Internet of Things (IoT) technologies and Artificial Intelligence (AI) algorithms. The 

primary objectives are to establish a comprehensive framework for effective water monitoring, enhance 

the accuracy of leak detection, and improve water quality predictions. Specifically, we will outline the 

methodologies employed in developing the QoW-Pro system, which leverages real-time data acquisition 

and predictive modeling to address the limitations of traditional monitoring techniques. By providing a 

comparative analysis of existing methods and showcasing the advantages of our approach, we seek to 

demonstrate how IoT and AI can transform water resource management practices. 

To achieve these objectives, we utilize a combination of IoT technologies and advanced AI algorithms. 

The IoT framework includes wireless sensor nodes that continuously monitor water parameters such as 

pressure and quality, transmitting data to a cloud platform for real-time analysis. This enables automated 

alerts for any detected anomalies. Concurrently, AI algorithms are applied to analyze the collected data, 

employing machine learning models for pattern recognition and anomaly detection, which significantly 

enhance predictive capabilities. 

4.1 System Components Overview 

Figure 1 provides a detailed view of the internal electronics within the control box. The setup includes 

various microcontrollers and sensor modules, such as Arduino and ESP8266 boards, which are essential 

for processing the sensor data and enabling wireless communication. These components are all 

interconnected with wires and mounted on breadboards for a flexible and easily modifiable setup. The 

system employs sensors such as flow meters, water quality sensors (e.g., pH, turbidity), and leak 

detectors. The LEDs indicate the operational status of the sensors and controllers, providing visual 

feedback for monitoring the system's functionality. 

 

Fig 1. Prototype components 

Figure 2 displays the physical assembly of the system, highlighting the interconnected pipes and valves, 

along with the control box. The control box is integrated with sensors and electronics to monitor the 

water flow and quality in real-time. The system includes a container for collecting water samples, which 

are analysed by the sensors to detect any anomalies. 
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Fig 2. System prototype 

System Architecture  

In this subsection, we'll break down how our IoT-based water monitoring system is set up, showing how 

all the parts work together to achieve our goals. The sequence diagram depicts the interactions within 

an IoT-based water monitoring system: 

 Data Collection: Sensors gather data on water quality and leaks, sending it to ThingSpeak and 

Firebase using microcontrollers. 

 Data Processing and Storage: ThingSpeak stores data for quick access, while Firebase handles 

data for in-depth analysis. Django retrieves data from Firebase, processes it using machine 

learning algorithms, and returns the analysis. 

 Anomaly Detection: If an anomaly is detected, Django sends alerts to the mobile app and an 

SMS alert via the GSM module. If no anomaly is detected, no action is required. 

 User Interaction: The mobile app displays data and allows the user to request control. Users can 

send control commands via the mobile app. 

 Remote Control: The mobile app sends an SMS command to the GSM module to toggle the 

valve based on user input. The system executes the user's command and provides feedback. This 

setup ensures real-time monitoring, efficient data processing, and user control over the water 

system. 

 

Fig 3. QoW-Pro - Process steps 
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4.2 Cloud services for QoW-Pro 

Cloud computing refers to the provision of on-demand computing resources over the internet, enabling 

scalable, flexible, and efficient capabilities without direct active management by users. It utilizes data 

centers globally, allowing users to access servers, storage, databases, and more as a service, rather than 

maintaining physical infrastructure. Our project specifically employs ThingSpeak and Firebase cloud 

platforms, with details on their integration and utilization provided below. 

ThingSpeak is an open-source Internet of Things (IoT) platform that allows you to collect, store, analyze, 

and visualize data from IoT devices. It provides real-time data collection and storage in the cloud, 

enabling users to create data-processing workflows, perform analytics, and trigger actions based on the 

data received. ThingSpeak supports integration with MATLAB for advanced data analysis and 

visualizations. 

Firebase is a platform developed by Google for creating mobile and web applications. It provides a suite 

of cloud-based services, including a real-time NoSQL database, cloud storage, authentication, hosting, 

and machine learning capabilities. Firebase enables developers to build and manage apps with features 

such as real-time data synchronization, user authentication, and cloud messaging, making it a 

comprehensive backend-as-a-service (BaaS) solution. 

4.3 Innovative Technique Proposed for Leak Detection in QoW-Pro 

In this section, we present an innovative technique for leak detection in water distribution systems, 

utilizing pulse-based flow sensors. Our technique represents a significant advancement in the field of 

water management. It involves calculating flow rates from sensor pulses, detecting leaks in specific 

zones, and identifying global leaks within the system. The following subsections detail the mathematical 

foundations and implementation of the technique. 

 

Fig 4. Algorithm leak detection in QoW-Pro 
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Mathematical Equations  

The core of our leak detection technique relies on calculating flow rates and detecting discrepancies 

between expected and actual flow rates. Here are the essential equations used in the technique: 

 Flow Rate Calculation: The flow rate for each sensor (i) is calculated using the following 

formula: 

𝑓𝑙𝑜𝑤𝑅𝑎𝑡𝑒[𝑖] = (
1000.0

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
) ×

𝑝𝑢𝑙𝑠𝑒𝐶𝑜𝑢𝑛𝑡𝑠[𝑖]

𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝑠[𝑖]
    (1) 

where: 

o flowRate[i]: is the flow rate of the ith sensor (in liters per minute, L/min). 

o pulseCounts[i]: is the number of pulses detected by the ith sensor in the given interval. 

o Interval: is the time interval for measurement (in milliseconds). 

o calibrationFactors [i]: is the calibration factor for the ith sensor. 

 Total Flow Discrepancy: The flow rate for each sensor (i) is calculated using the following 

formula: 

∆𝐹𝑅𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑅𝑚𝑎𝑖𝑛 − ∑ 𝐹𝑅𝑏𝑟𝑎𝑛𝑐ℎ𝑖

3
𝑖=1      (2) 

where: 

o ∆𝑭𝑹𝒕𝒐𝒕𝒂𝒍: is the total flow discrepancy. 

o 𝑭𝑹𝒎𝒂𝒊𝒏: is the flow rate of the main pipe. 

o 𝐹𝑅𝒃𝒓𝒂𝒏𝒄𝒉𝒊
: is the flow rate of the i-th branch pipe. 

 A potential leak is detected if: 

∆𝐹𝑅𝑡𝑜𝑡𝑎𝑙 > 𝑙𝑒𝑎𝑘𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑      (3) 

 Individual Zone Discrepancy: 

∆𝐹𝑅𝑏𝑟𝑎𝑛𝑐ℎ𝑖
= 𝐹𝑅𝑏𝑟𝑎𝑛𝑐ℎ𝑖

      (4) 

 Each ∆𝑭𝑹𝒃𝒓𝒂𝒏𝒄𝒉𝒊
  is compared against a specific threshold for that branch to detect significant 

discrepancies: 

∆𝐹𝑅𝑏𝑟𝑎𝑛𝑐ℎ𝑖
= 𝑏𝑟𝑎𝑛𝑐ℎ𝐿𝑒𝑎𝑘𝑇ℎ𝑟𝑒𝑒𝑠ℎ𝑜𝑙𝑑𝑖    (5) 

Technique Benefits  

The innovative technique we developed offers several advantages over traditional leak detection 

methods: 

 Higher Accuracy: The use of pulse-based flow sensors allows for precise flow rate 

measurements, leading to more accurate leak detection. 

 Scalability: The algorithm is scalable and can be implemented in both small and large water 

distribution systems. 

 Real-Time Monitoring: The system provides real-time monitoring and prompt leak detection, 

minimizing water loss and damage. 
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 Cost-Effective: By improving leak detection accuracy and response times, the technique reduces 

water loss and associated costs, making it a cost-effective solution for municipalities and water 

management entities. 

 Ease of Integration: The technique can be easily integrated into existing water distribution 

infrastructure with minimal modifications, ensuring a seamless transition and quick deployment. 

Algorithm Implementation  

The implementation of these equations in the code involves several key steps, including setting up sensor 

interrupts, calculating flow rates, and detecting leaks. (Algorithm 1.) 

Implications  

Implementing this (Algorithm 1) in municipal water systems can lead to substantial improvements in 

water conservation efforts. By detecting leaks promptly and accurately, municipalities can reduce water 

loss and improve the efficiency of water usage. Additionally, the scalability of the algorithm makes it 

suitable for larger and more complex distribution systems. 

Algorithm 1. Leak Detection in QoW-Pro 

1. Initialization: 

2. Set up variables and arrays for pulse counts and flow rates 

3. Initialize calibration factors for each sensor 

4. Configure pins and interrupts for each sensor 

5. Flow Rate Calculation: 

6. for each sensor i do 

7. Calculate flow rate using equation (1) 

8. Reset pulse counts for the next interval 

9. end for 

10. Total Flow Discrepancy: 

11. Calculate total flow discrepancy using equation (2) 

12. Individual Zone Discrepancy: 

13. for each zone i do 

14.    Calculate zone leak using equation (5) 

15.    if zone leak > leakThreshold then 

16.    Report leak in zone i 

17.    else 

18.    Report no leak in zone i 

19.    end if 

20. end for 

4.4 Introduction of the Random Forest Model for Prediction in QoW-Pro 

Overview of the model  

Random Forest is an ensemble learning method that combines multiple decision trees to enhance the 

model’s performance in terms of accuracy, robustness, and generalization. It operates by creating a 
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‘forest’ of decision trees, where each tree is trained on a random subset of the data and features, then 

aggregates their predictions for a final output. 

Random Forest choice  

 Robustness and Accuracy: The Random Forest model provided the highest accuracy (94%) 

among the models tested, with excellent precision (0.97) and recall (0.95). Its ensemble learning 

approach reduces the risk of overfitting and increases the model's robustness to noisy data. 

 Handling High-Dimensional Data: Random Forests are well-suited for handling datasets with 

many features, making them ideal for the diverse sensor data collected in the QoW-Pro system. 

 Interpretability and Computational Efficiency: Compared to complex models like Neural 

Networks, Random Forest is relatively easier to interpret and faster to train, while still maintaining 

high performance. 

Although the Random Forest model performed well, some limitations were observed: 

 Computational Complexity: Training the model with a large number of decision trees can be 

computationally intensive, which may slow down the prediction process slightly compared to 

simpler models. 

 Reduced Interpretability: While Random Forests offer better interpretability than Neural 

Networks, they are still less straightforward to analyze compared to a single Decision Tree. 

To mitigate these issues, we implemented strategies such as pruning less important trees to reduce 

complexity and increase interpretability while maintaining a high level of predictive accuracy. 

Key Steps in Random Forest 

 Bootstrap Sampling: 

o Random Forest uses a technique called bootstrap aggregation (bagging) to generate multiple 

subsets of the original training data. 

o For each tree, a bootstrap sample is created by randomly sampling the training data with 

replacement. 

Samplei ~ Training Data, i = 1, 2, …, N    (6) 

where N is the number of trees in the forest. 

 Random Feature Selection: 

o At each node split, a random subset of features is chosen to determine the best split. 

o This ensures diversity among the trees, as each tree may use different features for splitting. 

Featuressplit ⊑ All features     (7) 

Typically, for classification tasks, the number of features selected m at each split is: 𝑚 = √𝑃 where p 

is the total number of features. 

 Building Decision Trees: 

o Each decision tree is constructed using the bootstrap sample and the randomly selected 

features. 
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o Splits are chosen to maximize a specific criterion. For classification, Gini impurity is 

commonly used: 

 𝐺𝑖𝑛𝑖(𝐴) = 1 − ∑ 𝑝𝑖
2𝑐

𝑖=1      (8) 

where pi is the proportion of samples belonging to class i, and C is the total number of classes. 

o The process continues recursively until a stopping criterion is met (e.g., maximum depth, 

minimum samples per leaf). 

 Aggregation of Predictions: 

o Once all the trees are built, Random Forest combines their predictions to make a final decision. 

o For classification, the final prediction is made by majority voting: 

�̂� = 𝑚𝑜𝑑𝑒 {ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝐵(𝑥)}     (9) 

o For regression, the final prediction is the average of the predictions from all trees: 

 �̂� =
1

𝐵
∑ ℎ𝑖(𝑥)𝐵

𝑖=1        (10) 

  where hi(x) is the prediction of the ith tree, and B is the total number of trees. 

Benefits of Random Forest 

 Reduction of Overfitting: By averaging multiple trees, Random Forest reduces the variance and 

the risk of overfitting, which is common in single decision trees. 

 High Accuracy: It often provides higher accuracy than individual decision trees by combining 

the strengths of multiple models. 

 Handles High-Dimensional Data: Random Forest can handle a large number of features without 

the need for feature selection. 

 Robust to Noise and Outliers: The random sampling of data and features makes the model robust 

to noisy data and outliers. 

 Parallelizable: Each tree in the forest can be built independently, making the training process 

easy to parallelize. 

DrawBacks of Random Forest 

 Computationally Intensive: Training a large number of decision trees can be computationally 

expensive and memory-intensive. 

 Less Interpretable: While individual decision trees are easy to interpret, Random Forests, being 

an ensemble of many trees, are less interpretable. 

 Slower Predictions: Making predictions can be slower compared to simpler models, as it requires 

aggregating the results from all trees. 

Random Forest Model projection on QoW-Pro 

The learning curve for the random forest model similarly indicates that training accuracy remains 

consistently high, showing a good fit to the training data. Validation accuracy improves with additional 

training data, reflecting better generalization. 
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The single tree visualization from the random forest model showcases decision points based on features, 

with nodes containing the Gini index, sample count, class distribution, and the majority class, mirroring 

the structure and information of the decision tree visualization. 

Random Forest is a powerful ensemble learning method that leverages the strength of multiple decision 

trees to provide robust and accurate predictions. It is widely used in practice due to its ability to handle 

various types of data and its effectiveness in reducing overfitting. However, the computational 

complexity and reduced interpretability are important factors to consider when choosing this algorithm 

for a specific task. 

 

Fig 5. Learning Curve: Random Forest 

4.5 Random Forest Model Processing 

Data Collection 

It is a crucial step in the development of any machine learning model. The quality and quantity of data 

directly impact the performance of the model.  

For this project, the dataset was collected from the sensors of our prototype that monitor various 

parameters. The collected data is then sent to ThingSpeak and Firebase for storage and further 

processing. This method ensures that the data is accurately captured and reliably stored, making it 

suitable for training a robust machine learning model. 

The dataset consists of several thousand samples with features that include various sensor readings. The 

features include parameters such as temperature, pH level, turbidity, and conductivity, which are critical 

for monitoring water quality. The target variable is a binary label indicating whether the water quality 

is acceptable or not.  

Before training the model, the data was pre-processed to ensure it was in a suitable format. Missing 

values were handled using forward fill method, and categorical variables were encoded using Label 

Encoding where necessary. Additionally, feature scaling was performed using Standard Scaler to 

normalize the numerical features, ensuring they are on a similar scale. 
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Fig 6. Random Forest - Single Tree 
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Fig 7. Water quality data collection 

Model Training  

For this project, the Random Forest was selected due to its robustness and high performance in 

classification tasks. Initial exploratory analysis and baseline models, including Logistic Regression and 

Decision Trees, were tested to understand the data and establish performance benchmarks. 

 

Fig 8.  Classification tasks with different models 

The dataset was split into training and testing sets using an 80-20 split to ensure that the model’s 

performance is evaluated on unseen data. The Random Forest Classifier was trained on the training set, 

and hyperparameter tuning was performed using GridSearchCV to find the optimal parameters. Cross-

validation with 5 folds was used to ensure the model’s robustness and to prevent overfitting. 

 

Fig 9. Classification report for Random Forest 

The model’s performance was evaluated using several metrics, including precision, recall, F1-score, and 

support. The following classification report provides a detailed analysis of these metrics for each class: 

 Precision: measures the accuracy of the model in classifying a sample as positive. In this case, 

the precision for class 0 is perfect at 1.00, indicating that every instance predicted as class 0 was 
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indeed class 0. For class 1, the precision is also exceptionally high at 0.99, meaning nearly all 

instances predicted as class 1 were correct, with very few false positives. 

 Recall: The F1-score is a harmonic mean of precision and recall, providing a single score that 

balances both the model’s precision and recall. The F1-scores are outstanding, with class 0 scoring 

a perfect 1.00 and class 1 scoring 0.98. These scores reflect a strong balance between precision 

and recall, especially important in scenarios where both metrics are crucial. 

 F1-Score: Support indicates the number of actual occurrences of each class in the dataset. Class 

0 has a support of 953, and class 1 has a support of 140. This metric is crucial for understanding 

the distribution of classes within the data and how that might influence the model’s training and 

evaluation. 

 Support: Support indicates the number of true instances for each class in the dataset. In this case, 

there are 1017 instances of class 0 and 187 instances of class 1. This information is useful for 

understanding the distribution of classes in the dataset. 

 Accuracy: The model’s accuracy is 1.00, reflecting its overall ability to correctly classify both 

classes accurately. 

 Macro Average and Weighted Average: The macro average values for precision, recall, and 

F1-score are all 0.99, indicating exceptional average performance across both classes, without 

weighting by support, while the weighted averages are all 1.00, which adjust for the number of 

instances in each class, thus reflecting precision, recall, and F1-score adjusted for the class 

imbalance observed in the support. 

 

Fig 10. Confusion Matrix for Random Forest 

 True Positives (TP): 137 instances where the model correctly predicted the positive class. 

 True Negatives (TN): 951 instances where the model correctly predicted the negative class. 

 False Positives (FP): 2 instances where the model incorrectly predicted the positive class. 

 False Negatives (FN): 3 instances where the model incorrectly predicted the negative class. 
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This matrix indicates that the model has a high level of accuracy, correctly classifying a majority of 

instances in the test set. The presence of a few false positives and false negatives suggests that while the 

model is highly precise and reliable, there is still a slight margin for error. These performance metrics 

are crucial for evaluating the effectiveness of the model in practical scenarios. The model’s deployment 

through a Django web application offers a robust and scalable solution, facilitating efficient model-to-

end-user interactions. 

Challenges Encountered During Model Training 

During the development of the AI model for QoW-Pro, several challenges were encountered, 

specifically related to class imbalance, overfitting, and data quality. Here is a detailed analysis of each 

issue and the corresponding solutions implemented to address them: 

 Class Imbalance: 

o Challenge: In our dataset, there was a significant imbalance between the number of positive 

cases (leaks detected) and negative cases (no leaks). This imbalance can lead to biased model 

predictions, where the model tends to favor the majority class. 

o Solution: To mitigate this issue, we used techniques such as Synthetic Minority Over-

sampling Technique (SMOTE) to generate synthetic samples for the minority class. This 

approach helped balance the dataset, allowing the model to learn the features of both classes 

more effectively. 

 Overfitting: 

o Challenge: Overfitting was a concern, especially when training complex models that could 

potentially memorize the training data rather than generalize to unseen data. 

o Solution: To address overfitting, we employed regularization techniques and pruned the 

decision trees within the Random Forest model. Additionally, we used cross-validation to 

validate the model's performance on different subsets of the data, ensuring that it generalized 

well to new inputs. 

 Data Quality: 

o Challenge: Noise and missing values in the dataset posed challenges for the model's accuracy. 

Poor-quality data can significantly affect the performance of machine learning models, leading 

to unreliable predictions. 

o Solution: We performed data cleaning by handling missing values using methods like forward 

fill and implemented data normalization techniques to scale the features. This preprocessing 

step helped improve the overall quality of the data used for training. 

Model Deployment  

 Deploying the machine learning model is a critical step to make it available for practical use. 

The goal of deployment is to integrate the model into a production environment where it can 

make predictions on new data in real-time. 

 The trained model was saved using the joblib library and integrated into the Django application. 

An API endpoint was created to receive input data, pass it to the model for prediction, and return 

the results to the user. Extensive testing was conducted to ensure the API’s reliability, including 

unit tests, integration tests, and performance tests to handle various input scenarios and ensure 

quick response times.  

 To ensure the model’s continued performance, monitoring tools were implemented to track key 

metrics such as prediction accuracy, response time, and user feedback. Periodic retraining of 
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the model is planned to incorporate new data and maintain high accuracy. Any issues identified 

through monitoring will be addressed promptly to ensure the model’s reliability. 

 

Fig 11. Random Forest Model Deployment Process 

4.6 Mobile Application for QoW-Pro 

The mobile app is a crucial part of the IoT-based water monitoring system, acting as the main bridge 

between the user and the system’s various functions. It is designed to offer realtime monitoring, data 

visualization, anomaly detection, and remote control of water quality parameters. With an intuitive and 

user-friendly interface, the app provides essential tools and information for effective water management 

and timely responses to water quality issues. This section will outline the key roles of the mobile app, 

emphasizing its importance in boosting the overall functionality and user experience of the water 

monitoring system.  

The initial interaction with the app begins with the welcome screen (Figure 12.a.), which sets the tone 

for a positive user experience. The sign-in (Figure 12.b.) and sign-up screens (Figure 12.c.) provide a 

straightforward and secure method for users to access the app’s features, ensuring a smooth onboarding 

process. 
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a. Welcome screen 

 

b. Sign In Screen 

 

c. Sign Up Screen 

Fig 12. Welcome Interface 

The home screen (Figure 13.a.) acts as a central hub, providing users with real-time data on water 

consumption and quality. Detailed water quality information (Figure 13.b.) ensures that users can monitor 

key parameters such as pH, temperature, turbidity, and total dissolved solids (TDS), helping them make 

informed decisions about water usage. Additionally, the prediction screen (Figure 13.c.) uses advanced 

algorithms to predict water quality, alerting users if the water is not potable. 

 

 

a. Water Quality Screen 

 

b. Home Screen 

 

c. Prediction Screen 

Fig 13. Home Screen Interface 
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The water flow screen (Figure 14.a.) provides a detailed graphical representation of water flow rates over 

time, helping users to monitor and optimize their water consumption. The notifications screen (Figure 14.b.) 

alerts users to significant events, such as detected leaks, ensuring timely interventions to prevent water 

wastage and potential damage. The mobile app features a control Figure 14.c.) that can activate or deactivate 

the valve. 

 
a . Water Flow Screen 

 
b. Notifications Screen 

 
c. Control Valve Screen 

Fig 14. Notifications Interface 

The app also facilitates quick access to professional assistance by providing contact details and locations 

of local plumbers (Figure 15.a. and Figure 15.b.). This feature ensures that users can promptly address any 

water-related issues. The plumber details screen (Figure 15.c.) offers comprehensive information about the 

selected plumber, including contact details, services offered, and customer ratings, enhancing the user’s 

ability to find and contact reliable plumbing professionals. 

 
a. Plumbers 

 
b. Plumbers Maps Screen 

 
c. Plumbers Contact Details 

Fig 15. Plumbers Interface 
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Flutter Implementation  

The mobile application is implemented using Flutter, an open-source UI software development toolkit 

by Google. Flutter allows for the development of natively compiled applications for mobile, web, and 

desktop from a single codebase. This approach ensures a consistent user experience across different 

platforms and reduces development time and effort. 

Key Functionalities Implemented 

Our mobile application incorporates several essential functionalities to enhance user experience and 

provide comprehensive water quality monitoring. These essential features are: 

 Real-time Data Retrieval: The app integrates with sensors to retrieve real-time water data, which 

is then displayed on the home screen. This includes parameters such as pH level, temperature, 

turbidity, and TDS. The data is fetched from cloud services like Firebase and ThingSpeak, 

ensuring accurate and up-to-date information. 

 User Authentication: User authentication is handled using Firebase Auth, allowing users to 

create accounts, log in, and manage their profiles securely. The authentication process is 

streamlined to provide a smooth user experience while maintaining high security standards. Cloud 

Firestore facilitates the verification of user account existence within the application. Should an 

account be absent, the system mandates that the user registers prior to authentication. 

 

Fig 16. Authentication Firebase 

 Notifications and Alerts: The app uses Firebase Cloud Messaging to send notifications and alerts 

to users about critical water quality issues or system updates. This ensures that users are always 

informed about important events and can take necessary actions promptly. 

 Data Visualization: The app leverages various Flutter packages to visualize data using charts 

and graphs. This includes the use of packages like fl_chart, circular_chart_flutter, and 

echart_flutter to present data in an engaging and easy-to-understand format. 

 Service Management: Users can browse and manage plumbing services through the app. This 

feature includes viewing service details, contacting service providers, and managing 

appointments. This comprehensive functionality enhances the app’s utility and user engagement. 
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 Interaction with the Backend System: The app interacts with a backend system implemented 

using Django. The Django backend serves as an interface between the mobile application and the 

machine learning model, processing requests, retrieving data, and communicating with Firebase 

for authentication and real-time database updates. 

 

Fig 17. Firebase Cloud Messaging 

 

Fig 18. Backend System 

4.7 Performance Comparison with Existing Solutions 

Below is a table that provides a comparative analysis of QoW-Pro against existing water monitoring 

solutions, using key performance indicators: 
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Table 6. Performance comparison: QoW-Pro and existing water monitoring solutions 

Metrics QoW-Pro System Traditional Methods 
IoT-based Solutions 

(e.g., SMART2L) 

AI-based Solutions 

(e.g., LMD, CNN) 

Leak Detection 

Speed 

Real-time (within 

seconds) 

Delayed (hours to 

days) 

Minutes to hours Minutes (dependent 

on dataset size) 

Leak Detection 

Accuracy 

94% 70-80% 85% 85-94% (e.g., LMD 

at 94.44%) 

Water Quality 

Prediction Accuracy 

92% (Random Forest 

Model) 

Low (manual testing 

prone to errors) 

70-80% 85-95% (e.g., CNN at 

90%) 

Cost Efficiency 

High (affordable 

sensors, open-source 

software) 

Moderate to High 

(high labor costs) 

Moderate (sensor and 

data costs) 

High (requires 

advanced computing 

resources) 

Scalability 

Easily scalable for 

urban and agricultural 

settings 

Limited (manual 

methods) 

Moderate (sensor 

limitations) 

High (scalable but 

computationally 

intensive) 

Real-time 

Monitoring 

Capability 

Yes (IoT and AI 

integration) 

No (data processing 

delays) 

Yes (basic real-time 

data acquisition) 

Yes (real-time 

analysis possible) 

Analysis 

 Leak Detection Speed and Accuracy: 

o QoW-Pro significantly outperforms traditional methods with real-time leak detection 

capabilities, detecting leaks within seconds, compared to hours or even days required by 

manual techniques. 

o It also offers higher accuracy at 94%, surpassing both traditional approaches (70-80%) and 

some IoT-based solutions like SMART2L (85%). AI-based techniques such as Local Mean 

Decomposition (LMD) reach similar accuracy levels, but they often require larger datasets and 

complex configurations. 

 Water Quality Prediction Accuracy: 

o The QoW-Pro system's Random Forest model achieves a water quality prediction accuracy of 

92%, which is comparable to advanced AI-based solutions like CNNs that can reach up to 90-

95% accuracy. 

o Traditional methods fall short in this area due to the reliance on manual data collection and 

analysis, which is both time-consuming and error-prone. 

 Cost Efficiency: 

o QoW-Pro has a distinct advantage in terms of cost efficiency, as it employs affordable sensors 

and open-source software, significantly reducing the overall cost of deployment. 

o In contrast, traditional methods involve higher labor costs, and AI-based solutions often 

require expensive computational resources and hardware. 

 Scalability: 

o The scalable architecture of QoW-Pro allows it to be easily adapted for use in both small-scale 

urban networks and extensive agricultural irrigation systems. 

o While AI-based solutions can also be highly scalable, they often come with increased 

computational requirements, which may limit their deployment in resource-constrained 

environments. 
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 Real-time Monitoring Capability: 

o QoW-Pro integrates IoT and AI to provide continuous real-time monitoring and immediate 

response to detected anomalies, a feature that traditional methods lack. 

o IoT-based solutions offer real-time capabilities, but they may not be as robust or reliable as 

the integrated approach in QoW-Pro, which combines both data acquisition and advanced AI-

driven analysis. 

4.8 System performance in terms of quantitative data 

Sensor Performance Metrics 

Table 7 clearly presents each component's energy requirements for different modes, helping to illustrate 

the overall power needs and possible strategies for energy optimization in our system. 

Table 7. Power Consumption of System Components in Active and Idle Modes 

Component Operating Voltage (V) Power Consumption (mA) Mode 

ESP8266 3.3 
70–200 Active (Wi-Fi enabled) 

0.02 Deep Sleep 

SIM800L GSM Module 3.7 
10–15 Idle 

1000–2000 Active Transmission 

pH Sensor (PH-4502C) 5 5–10 Continuous Operation 

Turbidity Sensor 5 30 Typical Usage 

Water Flow Sensor  5 15 Operation 

Through the careful selection of components like the ESP8266 microcontroller and pH sensor, which 

operate with minimal power in idle or sleep modes, the system maximizes energy efficiency while 

maintaining readiness for real-time data collection. The power-intensive SIM800L GSM module, 

although requiring higher current during data transmission, only activates as needed, thus conserving 

energy during inactive periods. This balance between high-performance and low-energy modes 

significantly reduces overall power consumption, allowing for longer deployment times without 

frequent battery changes. Such efficiency aligns with the system’s environmental sustainability goals 

by lowering the carbon footprint associated with water quality monitoring. 

The sensors employed in the system were selected based on their ability to meet the requirements of 

real-time monitoring and high precision. Table 8 provides an overview of the key performance metrics 

for each sensor, including measurement range, accuracy, and response time (We must specify that the 

values in Table 7 are not measured but based on component datasheets). 

Table 8. Sensor Performance Metrics for Real-Time Water Monitoring 

Sensor Measurement Range Accuracy Response Time 

pH Sensor (PH-4502C) 0–14 pH ±0.1 pH < 60 seconds 

Turbidity Sensor 0–1000 NTU ±2% of measured value < 500 ms 

Water Flow Sensor 1–60 L/min ±3% of reading < 10 ms 

Temperature Sensor (DS18B20) -55°C to +125°C ±0.5°C (typical) < 750 ms 

Total Dissolved Solids (TDS) Sensor 0–1000 ppm ±10 ppm < 500 ms 
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Fig 19. Comparative Sensor Performance Metrics 

The system's sensor suite, including pH, turbidity, and flow sensors, provides reliable and precise data 

essential for detecting even minor changes in water quality. For instance, the pH sensor’s accuracy of 

±0.1 and the turbidity sensor’s quick response time (<500 ms) enable the detection of fluctuations that 

may indicate contamination or leakage. This level of sensitivity is crucial in maintaining water quality 

standards and supporting timely interventions, effectively preventing potential hazards before they 

escalate. The performance metrics underscore the system’s effectiveness in safeguarding water 

resources, contributing to sustainable management practices. 

The integration of quantitative data on both power consumption and sensor accuracy not only 

substantiates the system’s technical reliability but also provides a measurable foundation for comparing 

its efficiency against traditional monitoring systems. By quantifying each component’s energy use and 

measurement accuracy, the system offers a transparent and evidence-based approach, reinforcing its 

credibility as a scalable, resource-efficient solution for water monitoring in both urban and agricultural 

environments. 

Power Consumption Analysis During an Operating Cycle 

To provide an accurate description of the system's power consumption, we analyzed the behavior of 

each component during a full operating cycle, which consists of three primary stages: data collection, 

transmission, and idle mode. The power consumption for each component was measured (or estimated 

based on datasheet specifications) at every stage of operation. Table 9 summarizes the states of the key 

components during the cycle and their corresponding power consumption. 

During the data collection stage, sensors such as the pH, turbidity, and flow sensors were active, 

consuming minimal power while transmitting data to the microcontroller (ESP8266). In the transmission 

stage, the GSM module (SIM800L) exhibited the highest power consumption due to active data 

transmission. Finally, during the idle stage, components transitioned to low-power modes, significantly 

reducing the overall energy draw. This operational design highlights the system’s balance between 
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performance and energy efficiency, making it suitable for deployment in remote or resource-constrained 

environments. 

Table 9. Component states and power consumption during the operating cycle 

Stage of Operation Component State Power Consumption (mA) 

Data Collection pH Sensor Active 10 

 Turbidity Sensor Active 30 

 Flow Sensor Active 15 

 ESP8266 Processing 150 

Transmission SIM800L Transmitting 1500 

 ESP8266 Transmitting 200 

Idle pH Sensor Low-Power Mode 5 

 Turbidity Sensor Standby 5 

 Flow Sensor Standby 5 

 ESP8266 Deep Sleep 0.02 

The power consumption analysis demonstrates the system’s ability to balance performance and energy 

efficiency across various stages of operation, making it suitable for resource-constrained and remote 

deployment scenarios. During the data collection stage, components such as the pH sensor, turbidity 

sensor, and flow sensor operate at low power levels, consuming a total of approximately 205 mA. This 

stage ensures precise data acquisition while maintaining minimal energy usage, which is critical for 

continuous monitoring. 

In the transmission stage, the power-intensive SIM800L GSM module, which consumes up to 1500 mA, 

becomes active to transmit data. Although this is the most energy-demanding phase, its intermittent 

activation minimizes overall energy consumption. For example, by scheduling transmissions at 

optimized intervals rather than continuously, the system significantly reduces energy expenditure while 

maintaining real-time reporting capabilities. 

The idle stage represents the most energy-efficient phase, with key components such as the ESP8266 

microcontroller entering deep sleep mode, consuming as little as 0.02 mA. Sensors also transition to 

low-power states, reducing their combined consumption to approximately 20 mA. This design 

minimizes standby power usage, extending the system’s operational lifespan on battery power. 

4.9 Discussion 

The system performance demonstrates the effectiveness and efficiency of the proposed IoT and AI-

based water monitoring system, QoW-Pro, in addressing key challenges of real-time water quality 

assessment and leak detection. The following discussion highlights the significance of the quantitative 

data, such as energy consumption and sensor performance metrics, in strengthening the credibility and 

applicability of the system. 

Energy Efficiency and Sustainability 

The system’s components, particularly the ESP8266 microcontroller and flow sensors, exhibit a balance 

between performance and low energy consumption. For instance, the ESP8266 operates at 

approximately 70–200 mA during active Wi-Fi usage and drops to an impressive 20 µA in deep sleep 

mode. Such energy-efficient design allows for prolonged deployment in remote areas with minimal 

maintenance, aligning with sustainable practices and reducing operational costs. While the SIM800L 
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module consumes up to 2A during transmission, its intermittent use ensures that the overall energy 

footprint remains manageable. 

Sensor Accuracy and Real-Time Responsiveness 

The sensor suite, including pH, turbidity, and flow sensors, provides high accuracy and responsiveness, 

which are critical for effective water monitoring. For example: 

o The pH sensor achieves a precision of ±0.1, enabling accurate detection of changes in water 

acidity. 

o The turbidity sensor offers a rapid response time of <500 ms, ensuring immediate 

identification of anomalies in water clarity. 

o The flow sensor’s response time of <10 ms supports real-time detection of leaks. 

These performance metrics ensure the system can promptly identify and address water quality issues, 

making it suitable for both urban water networks and agricultural irrigation systems. 

Comparative Performance and Scalability 

Compared to traditional methods and existing IoT-based solutions, QoW-Pro demonstrates significant 

improvements: 

o Leak detection accuracy exceeds 94%, surpassing the typical 70–80% range of conventional 

acoustic or pressure-based methods. 

o Energy-efficient operation and cost-effective hardware make the system adaptable to both 

small-scale and large-scale applications, enhancing scalability. 

Limitations and Future Enhancements 

While the results validate the system’s effectiveness, some limitations were observed. The power-

intensive nature of the SIM800L module during transmission highlights the need for exploring 

alternative communication protocols, such as LoRa or NB-IoT, to further enhance energy efficiency. 

Additionally, while sensor accuracy was sufficient for the study, integrating advanced calibration 

techniques could improve reliability under varying environmental conditions. 

Implications for Water Management 

The findings underscore the potential of QoW-Pro as a robust tool for sustainable water management. 

By combining real-time monitoring with predictive analytics, the system not only minimizes water loss 

but also supports proactive decision-making. These capabilities address pressing challenges such as 

water scarcity and environmental sustainability, making QoW-Pro a valuable contribution to global 

water management efforts. 

5. CONCLUSION 

The implementation of the QoW-Pro system has demonstrated clear practical improvements in both 

water monitoring and leak detection, addressing the limitations of traditional methods. Specifically, the 

system achieved a 30% reduction in undetected leakages over a six-month period in urban water 

distribution networks. This improvement was primarily due to the system's pulse-based flow sensors, 

which identified discrepancies between expected and actual water flow in real-time. Additionally, the 



                                         Journal of Renewable Energies 27 (2024) 243 – 281 

279 

anomaly detection algorithms increased the leak detection accuracy to 94%, significantly enhancing 

response times. 

Moreover, the integration of IoT and AI has proven to be a cost-effective solution for water resource 

management, leading to an estimated 20% reduction in operational costs compared to traditional 

monitoring techniques. These improvements contribute directly to more efficient water resource 

utilization, lower maintenance expenses, and reduced environmental impact. 

Future work will aim to further enhance the system's predictive capabilities by integrating advanced 

machine learning techniques and expanding sensor networks to cover more complex environments. 

Additionally, exploring blockchain technology for secure data management and predictive maintenance 

of water infrastructure holds potential for further innovation in this field. 
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