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 Hybrid energy systems (HES) provide an effective solution to the growing 

global energy demand while addressing the limitations of conventional sources 

and environmental challenges. By integrating renewable and conventional 

energy sources, these systems enhance reliability, reduce costs, and improve 

efficiency. However, the variability of renewable resources such as solar and 

wind makes HES design more complex. This paper explores various design and 

sizing methods for HES, focusing on combining clean sources, including wind 

and solar, with conventional energy options. Through advanced optimization 

techniques, including artificial intelligence (AI), the study demonstrates how AI 

can identify optimal configurations to ensure system reliability while 

minimizing costs. The paper also highlights the crucial role of HES in providing 

energy to remote and underserved areas with limited access. This work serves 

as a comprehensive introduction for researchers and engineers interested in 

HES sizing, offering insights into technical challenges and optimization 

strategies, and contributing to the advancement of sustainable energy systems. 
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1. INTRODUCTION 

As cities expand and industries grow, the demand for energy increase, and this primarily relying on 

fossil fuels such as coal and oil. These traditional energy sources are finite and unevenly available across 

different regions of the world. In addition, they pose significant risks to the environment (Come Zebra 
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et al., 2021). Conversely, renewable energy sources (RES) including wind and solar offer a cleaner, 

endless option. However, these green solutions come with their set of challenges, chiefly their 

dependence on variable weather conditions, which complicates consistent power supply (Hannan et al., 

2020). In many regions, especially remote or rural areas far from urban centers, extending the main 

power grid is prohibitively expensive. Renewable energy steps in as a viable solution, providing 

localized power generation (Upadhyay & Sharma, 2014).  

In light of the obstacles encountered by RESs, Hybrid Energy Systems (HES) appear as a crucial 

solution. These systems combine multiple forms of energy generation, such as solar and wind, often 

integrating traditional fossil fuels or newer, cleaner alternatives like bioenergy (Come Zebra et al., 

2021). This integration supports a more stable and reliable energy supply, leveraging the strengths of 

each component to mitigate their individual weaknesses (Güven et al., 2024). For instance, when solar 

power is low due to cloudy weather, wind or photovoltaic (PV) components can compensate, ensuring 

a consistent energy flow. HESs offer numerous advantages, especially in improving energy security and 

dependability in areas where traditional power networks are inaccessible or not financially viable 

(Mishra et al., 2023). Moreover, they assume an essential role in minimizing emissions through the 

incorporation of a greater percentage of RESs, to make a significant contribution to the global effort to 

reduce climate change (Ali & Mohammed, 2024). 

The utilization of renewable energy systems is not without complications. Determining the appropriate 

system size is challenging due to fluctuating local electricity demands and previously mentioned 

renewable energy challenges (Agajie et al., 2023). The design process must consider technological 

options, community needs, and resource availability (Luna-Rubio et al., 2012). This article aims to shed 

light on improving the reliability and efficiency of HES, particularly for specific applications. It delves 

into design considerations, control strategies, and the integration of different technologies to enhance 

system performance. Through this exploration, the goal is to advance renewable energy as a more 

feasible and reliable power source for a wider audience. 

2. VARIATIONS IN HES DESIGNS 

A HES is a combination of renewable and nonrenewable energy generators, alongside power 

conditioning units, storage, and loads, with the potential to connect to the grid. These systems come in 

different configurations, such as high frequency AC coupled, power frequency AC coupled, DC coupled 

and hybrid coupled systems, selected according to the specific requirements of the application 

(Upadhyay & Sharma, 2014). Their primary aim is to integrate multiple energy sources to meet electrical 

loads, primarily AC, while also capable of powering DC loads when needed (Ammari, 2022). 

By combining alternative (renewable) and conventional (grid or diesel generator) energy sources, along 

with energy storage components like battery banks or fuel cells, HESs exploit the benefits of each energy 

source to counterbalance their limitations. For example, although sources like solar and wind may have 

unpredictable availability, their complementary patterns ensure a continuous energy supply when 

integrated into hybrid systems (Medghalchi, 2023). 

These systems can function while connected to the grid, where they prioritize local demand and can 

return excess energy to the grid, or operate independently in isolated areas. Integration of solar or wind 

energy often requires auxiliary sources like battery banks or fuel cells to manage their intermittent 

availability (Güven et al., 2024). Additionally, a control unit is sometimes necessary to balance the 

availability of energy sources and decide which source should power the load. In recent years, numerous 

HES configurations have been extensively utilized, as outlined in Fig. 1 (Upadhyay & Sharma, 2014). 
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Fig. 1. Overview of basic components and architecture of hybrid energy systems. 

3. HES EVALUATION METRICS 

This section introduces the metrics utilized to evaluate the efficiency and economic feasibility of HESs. 

It serves as a foundation for assessing how effectively these systems operate and whether they are 

financially sustainable in the long run. 

3.1 Performance metrics 

Performance metrics are used to evaluate how well a HES functions in terms of reliability and 

effectiveness. They provide an understanding of the system's capability to reliably provide electricity 

and meet demand under various operating conditions. 

3.1.1 Loss of power supply probability 

In the field of wind and solar energy, where parameters fluctuate randomly, ensuring the reliability of a 

HES is paramount. The LPSP emerges as a critical metric. LPSP is essentially expresses the relationship 

between the energy shortfall and overall demand during the evaluation period. It can be calculated as 

(Agbehadji et al., 2021): 

𝐿𝑃𝑆𝑃 =
∑ 𝐿𝑃𝑆(𝑡)𝑇
𝑡=1

∑ 𝐸𝐿(𝑡)
𝑇
𝑡=1

 (1) 

Where: 𝑇 is the total number of time periods, 𝑡 is the time period 𝐿𝑃𝑆(𝑡) is the Loss of Power Supply 

for time period t and 𝐸𝐿(𝑡) is the Energy Load for time period t. 

3.1.2 Loss of load expected 

LOLE offers understanding into the expected deficit in energy when demand exceeds the system's ability 

to generate power. It requires evaluating various scenarios where load shedding could happen and 

estimating the probable duration of these scenarios based on their probabilities. The LOLE can be 

obtained using the following equation (Tezer et al., 2017): 

𝐿𝑂𝐿𝐸 =∑  

𝑇

𝑡=1

∑ 

𝑖∈𝑆

𝑃𝑖 × 𝑇𝑖 (2) 
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With: 𝑖 is the counter for possible scenarios of load loss, 𝑆 is the set of all possible scenarios that could 

result in load loss, 𝑃𝑖 is the probability of each scenario "i" occurring during the year and 𝑇𝑖 : is the time 

in hours during which scenario "i" results in load loss. 

3.2 Economic metrics 

Economic metrics focus on the financial aspects of HESs. They analyze the overall system cost 

throughout its lifetime, covering initial investment, maintenance costs, and operational expenses. 

3.2.1 Annualized cost of system 

The ACS is the total yearly expense of a system. It includes three main costs: the yearly capital cost (for 

buying and setting up the system), the yearly maintenance cost (for keeping it running), and the yearly 

replacement cost (for fixing or upgrading parts as needed) (Lian, 2019). 

ACS = 𝐶𝑐𝑎𝑝 + 𝐶𝑚𝑎𝑖𝑛 + 𝐶𝑟𝑒𝑝 (3) 

Where: 𝐶𝑐𝑎𝑝 : is th capital cost of the system, including initial investments, 𝐶𝑚𝑎𝑖𝑛  is the main operational costs 

over the year and 𝐶𝑟𝑒𝑝 is the costs associated with system repairs or maintenance. 

3.2.2 Levelized cost of energy 

The LCOE simplifies the cost analysis of the HES by expressing the mean cost of generating electricity 

over its operational lifespan. The calculation involves dividing the yearly system cost by the overall 

energy demand over the year (Papaefthymiou & Papathanassiou, 2014). LCOE helps system designers 

to understand the economic feasibility of the system compared to other energy generation methods, 

aiding in investment decisions and long-term planning. It can be calculated using this formula (Gupta et 

al., 2021): 

𝐿𝐶𝑂𝐸 =
ACS

𝐸𝑡𝑜𝑡
 (4) 

With: ACS is the annualized cost of the system and 𝐸𝑡𝑜𝑡 is the total load demand over the year. 

4. SIZING METHODS OF HES 

The process of determining the best size for HESs involves various methods. These methods aim to find 

the right mix of energy sources and components to make the system efficient. These approaches are 

present in Fig. 2 (Upadhyay & Sharma, 2014). Traditional methods use calculations and trials to figure 

this out. Newer methods, like artificial intelligence (AI), offer more advanced ways to optimize these 

systems, making them more effective. Together, these approaches help in designing energy systems that 

are both effective and sustainable, ensuring they meet our energy needs in the best possible way 

(Bhimaraju et al., 2022). 
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Fig. 2. Classification of Sizing Methods for HESs. 

4.1 Traditional methods 

The sizing of HESs involves several methodologies aimed to determine the optimal configuration for 

efficient operation. Traditional methods, including analytical, iterative, and probabilistic approaches, 

rely on mathematical models, trial-and-error techniques, and probabilistic methods to find the best 

solution while accounting for a range of potential challenges and variations (Ammari, 2022). Zhang et 

al. (Zhang et al., 2013) presented an optimization algorithm for sizing the components of HES composed 

of a PV-diesel-battery system utilizing an iterative method. The system was evaluated in Alaminos, 

Philippines. This algorithm aims to lower energy cost by considering initial costs of fuel, maintenance, 

and emission. Two sizing solutions for the HES are presented, with costs of energy (COE) at $0.3762 

per kWh and $0.5639 per kWh, respectively. Yang et al. (Yang et al., 2003) introduced a probabilistic 

method to evaluate and study a hybrid PV-wind energy generation systems equipped with storage 

batteries, and additionally evaluates the systems' reliability. This research was performed on an island 

in Hong Kong. The results indicate that the HES of a 3-day energy storage capacity is suitable to ensure 

an LPSP less than 1%, while the HES of a 5-day energy storage capacity is suitable to ensure a LPSP 

equals to 0%. 

4.2 AI methods 

In the context of HESs, AI methods are essential for optimizing the configuration and operation of these 

systems. These methods enable the intelligent search for optimal or near-optimal solutions within a vast 

and complex solution space, taking into account the variability of RESs, the demand profiles, and system 

constraints (Khan et al., 2018). 

4.2.1 Grey wolf optimization algorithm 

The GWO algorithm takes inspiration from the social hierarchy and hunting techniques of grey wolves 

in nature. It mimics the way grey wolves organize themselves into a pack and how they hunt, encircle, 

and harass their prey until they find the opportune moment to attack (Srilakshmi et al., 2024). For sizing 

HESs, GWO is utilized to find the best possible system configuration by exploring the search space 

through the simulation of these behaviors. Agents in the algorithm represent potential solutions, and 

their movements through the search space are guided by the placements of the alpha (the best solution), 

delta and beta wolves (Srilakshmi et al., 2024). This algorithm is particularly valued for its simplicity, 
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flexibility, and effectiveness in dealing with non-linear, multi-dimensional optimization problems. 

Abdulsamed et al. (Tabak et al., 2022) focused on meeting the energy demand of a facility using a HES 

comprising a wind turbine, PV panels, and a biomass (BM) system. The aim is to optimize power 

distribution, minimize costs and ensure reliability. An efficient optimization algorithm, known as the 

Grey Wolf Optimizer, has been developed to select power sources and enhancing system reliability. 

Common optimization methods, such as genetic algorithm (GA) and simulated annealing, are employed 

to compare their performance with the new algorithm. Comparative analysis reveals that GWO yields 

satisfactory results, outperforming GA and SA. The optimized PV/WT/BM HES effectively fulfills the 

facility's energy requirements while also mitigating CO2 emissions by 144.29 tons annually. 

4.2.2 Improved grasshopper optimization algorithm 

The GOA is developed based on the swarming actions of grasshoppers. This algorithm has been 

improved for HES applications by enhancing its exploration and exploitation capabilities (Wu et al., 

2023). The improved version addresses the standard GOA's tendency to prematurely converge on local 

optima by introducing mechanisms that encourage diversity in the solutions and adapt the search 

intensity according to the phase of optimization. This makes it more suitable for finding the global 

optimum in the sizing and planning of HESs, where the solution space is vast and complex (Naderipour 

et al., 2022; Wu et al., 2023). Amirreza et al. (Naderipour et al., 2022) presented an optimized stand-

alone HES comprising wind turbines, PV arrays, and battery storage. The optimization uses real data 

from a remote location, focusing on the optimal configuration of system components to minimize costs 

and ensure energy reliability. An innovative method, the improved GOA, is used for optimal system 

sizing, demonstrating superior performance in reliability and cost compared to traditional methods. The 

study also examines the effect of interest rate variations on system costs and reliability, finding 

significant impacts. Additionally, it notes that higher storage costs lead to increased overall costs and 

reduced reliability. 

4.2.3 Improved search space reduction algorithm 

This algorithm is a technique designed to efficiently narrow down the search space in optimization 

problems, making the search process more focused and faster. In (Bhimaraju et al., 2022) the authors 

focused on the best sizing of a HES that combines wind and solar power with pumped storage hydro-

power (PSHS) for grid integration. The primary objective is to find the best mix of solar, wind, and PHS 

components to lower the overall energy cost, ensuring system reliability and maximizing the use of 

renewable sources to meet energy demands. This research introduces a novel approach by incorporating 

the variability of water inflow over the rainy season into the HRES sizing, a method not previously 

explored in optimal sizing studies. The paper presents a new algorithm, the search space reduction 

algorithm, and its improved version (ISSR) for determining the optimal system size. The ISSR 

algorithm’s effectiveness is validated through performance comparison with other optimization 

methods, like the teaching-learning based optimization and GWO, demonstrating the ISSR's superior 

ability to minimize costs. 

3.2.4 Non-dominated Sorting Genetic Algorithm II 

The NSGA-II algorithm is a popular evolutionary method utilized for the resolution of multi-objective 

optimization issues. it starts with a population of random solutions and attempts to achieve the best 

solution to an optimization problem (Abdelkader et al., 2018). Abdelkader et al (Abdelkader et al., 2018) 

introduced a novel method for optimizing the design of a combined wind and solar photovoltaic HES, 

equipped with a hybrid storage system, for a location in Tunisia. The authors developed models for each 

element of the system to formulate the optimization algorithm they proposed. The optimization problem 
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was redefined with the aim of simultaneously minimizing the LPSP for the load and the total cost. A 

multi-objective GA was utilized to determine the best size of the HES. Their findings indicated that the 

lowest LPSP could be achieved at a significantly reduced total electricity cost, highlighting the 

contribution of RESs to the enhancement of Tunisia's energy sector. 

4.2.5 Particle swarm optimization 

The PSO algorithm takes inspiration from the social nature of fish schooling or birds flocking. In PSO 

algorithm, particles, which represent possible solutions, move through the solution space by following 

the current best particles while also exploring the space based on their own and their neighbors' past 

experiences. This balance between exploration and exploitation allows PSO to be highly effective in 

finding optimal solutions for the sizing of HESs (El Boujdaini et al., 2022). In (El Boujdaini et al., 2022) 

authors focuses on simulating the electrical supply for isolated homes in Morocco, Spain, and Algeria. 

It is structured around two primary objectives: firstly, to optimize a hybrid system catering to various 

numbers of households, and secondly, to establish fixed values for chosen parameters. Utilizing the PSO 

technique, the research aims to optimize and evaluate a stand-alone hybrid system combining PV, wind, 

diesel, and battery technologies. The optimization goals were to adjust the sizes of system components 

to minimize the COE and also explores hydrogen generation from the electricity produced by the wind 

and PV systems. 

4.2.6 Modified Orca Predation Algorithm 

The mOPA is an enhancement of the original Orca Predation Algorithm, is developed based on the 

hunting patterns of orcas. It introduces two key improvements: Opposition-based learning and Levy 

flight. These techniques improve the algorithm's exploration and exploitation balance, enabling it to find 

optimal solutions while avoiding premature convergence to local optima. This makes mOPA highly 

suitable for addressing complicated global optimization challenges, including the sizing of HESs (Emam 

et al., 2023). In the driving phase of mOPA, Levy flights are used to enhance search diversity, helping 

orca agents to explore new areas of the search space. In contrast, the Opposition-based learning 

technique accelerates the convergence by comparing candidate solutions with their opposites, ensuring 

faster progress towards optimal solutions (Emam et al., 2023). In the study presented in (Emam et al., 

2023), mOPA was applied to size an off-grid HES composed of PV panels, a BM gasifier, hydrogen 

tanks, and fuel cells in a remote region in Egypt. The algorithm optimized the system's components, 

minimizing the cost of energy while ensuring reliability. Compared to the original OPA, mOPA 

demonstrated superior performance, reducing both the COE and the system's total annual cost by a 

significant margin. The performance of mOPA in practical applications, proving its utility in optimizing 

HES configurations for remote locations. 

4.2.7 Discrete Harmony Search Algorithm 

The DHS algorithm is inspired by the musical process of harmony improvisation, where musicians 

continuously adjust pitches to improve harmony. In this algorithm, a set of potential solutions 

(harmonies) are iteratively adjusted based on predefined rules to search for optimal solutions (Mishra et 

al., 2023). The DHS algorithm, through pitch adjustment, random selection, and memory consideration, 

refines solutions over several iterations, allowing it to find near-optimal configurations for complex 

problems like HES sizing. In (Mishra et al., 2023), the DHS algorithm was used to optimally size a grid- 

connected HES consisting of solar PV, BM, and batteries. For a rural electrification project in 

Godinbuda Village, Madhya Pradesh, India, the DHS algorithm optimized the sizes of PV panels (83.50 

kWp), biomass (30 kW), and batteries (38.40 kWh), minimizing the net present cost (NPC) to INR 13.07 
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million. The goal was to balance the intermittent renewable energy supply with the demand, ensuring 

power reliability while reducing the cost of energy (COE) to INR 4.66/kWh. 

4.2.8 Multi-Objective Modified Firefly Algorithm 

The MOMFA is an optimization method that mimics the social behavior of fireflies. In this algorithm, 

fireflies (representing potential solutions) are attracted to each other based on their brightness, which 

corresponds to the level of solution quality. A chaotic mapping mechanism is incorporated to enhance 

the exploration process, allowing the algorithm to efficiently search for the most favorable solutions. 

The multi-objective nature of MOMFA allows it to simultaneously optimize several goals, such as 

maximizing renewable energy reliability and minimizing costs (Le et al., 2023). Tay et al. (Le et al., 

2023) applied MOMFA to optimize the energy storage system for a warehouse connected to the grid in 

a tropical climate using real electricity usage data. The goal was to size three different energy storage 

systems: battery-only, hydrogen-only, and a hybrid system. The optimization showed that battery 

systems provided the optimal results in terms of economic performance and reliability for short-term 

storage. However, for long-term storage needs, particularly in regions with high seasonal variations, the 

hydrogen storage system outperformed the battery system because of its capacity to store larger amounts 

of energy for longer durations. The hybrid system emerged as the most balanced solution, ensuring a 

reliable power supply year-round by leveraging the strengths of both technologies. This approach 

lowered component degradation and improved the overall economic feasibility of the system, delivering 

the highest self-sufficiency ratio and net present value.  

4.2.9 Modified Dragonfly Algorithm 

The MDA is an advanced metaheuristic optimization technique inspired by the static and dynamic 

swarming behaviors of dragonflies. In the MDA, individual solutions (dragonflies) explore the solution 

space by simulating movements like alignment, cohesion, separation, attraction, and distraction, 

mimicking the dragonfly’s swarm behavior (Tittu George et al., 2023). The algorithm balances 

exploration and exploitation phases through these behaviors, ensuring global search capabilities while 

avoiding premature convergence to local optima. The authors in (Tittu George et al., 2023), used MDA 

to optimize the sizing of a hybrid solar-wind energy system for an educational institution. The model 

aimed to minimize the Net Present Value (NPV) of the system by balancing energy supply from solar 

and wind sources. This HRES was designed without battery storage, relying on grid interaction to 

maintain reliability and reduce costs. The optimization model considered real-time data on solar 

irradiation, wind speed, and load demand, offering a highly accurate configuration for the system. The 

best case identified was a grid-connected HRES, which significantly improved both reliability and cost-

efficiency. The system included solar panels placed on underutilized rooftop spaces and wind turbines, 

maximizing the use of available space and renewable resources. By employing the MDA, the study 

demonstrated an optimal reduction in the NPV over the system's lifespan while providing a consistent 

power supply for the institution's needs. The model presented an efficient solution that promotes 

renewable energy adoption in institutional settings. 

4.2.10 Differential Evolution (DE) Algorithm 

The DE algorithm is a robust optimization technique inspired by natural evolution. It operates by 

initializing a population of potential solutions and iteratively improving them by combining existing 

solutions to explore the solution space. DE is particularly effective for optimizing complex, non-linear, 

and multi-modal problems, which makes it highly suitable for energy system sizing and cost 

optimization tasks (Thirunavukkarasu et al., 2023). In this study (Kamal et al., 2023), the DE algorithm 

was applied to optimize the sizing and cost of a standalone rural microgrid for electrification in 
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Uttarakhand, India. The microgrid incorporated renewable energy resources such as solar SPV, wind 

energy systems, BM, biogas, and micro-hydropower, all locally available. The DE algorithm was tasked 

with minimizing the NPC of the system while ensuring a continuous and reliable energy supply for the 

region. Through simulations, the DE algorithm outperformed other algorithms like PSO and Genetic 

Algorithm in both cost reduction and computational efficiency. The optimal configuration achieved a 

total NPC of $712,532 and a COE of $0.14/kWh. This makes the DE-optimized microgrid model a 

highly cost-effective solution for rural electrification. The study also conducted a sensitivity analysis, 

showing how the system performance responds to changes in input parameters such as fuel costs, load 

demand, and renewable energy availability. 

There are also other algorithms that have been utilized in the literature for sizing HESs, such, the firefly 

algorithm (Yuan, n.d.), discrete GWO algorithm (Saha et al., 2023), the pattern search optimization 

algorithm (Ali & Mohammed, 2024). 

4.2.11 Shared Strategies and Optimization Approaches in AI for Hybrid Energy Systems Design 

Most of the AI algorithms used for designing HESs share the same fundamental principles. They 

necessitate the formulation of an objective function, usually aimed at minimizing energy costs or the 

NPC, along with setting constraints such as ensuring energy demand is met and adhering to system 

reliability and renewable energy targets. Additionally, these algorithms work with specific variables 

such as the number of solar panels, wind turbines, and batteries, which play a crucial role in determining 

the optimal system configuration. The diagram presented in Fig. 3 provides a comprehensive 

representation of how AI algorithms function in the process of sizing HES. It outlines the key steps and 

considerations necessary for optimizing the design of these systems, integrating various parameters such 

as resource availability, energy demand, cost factors, and system constraints. The process begins with 

data collection, where essential input data, including renewable energy resource potential, hourly or 

daily energy consumption, and capital and operational costs, is gathered. This information forms the 

basis for initializing the AI algorithm. Once the algorithm is initialized, two critical elements are 

addressed: the objective function definition and constraint setup. The objective function, which typically 

focuses on minimizing the COE or NPC, aims to meet the energy demand while optimizing other system 

performance metrics. The constraint setup, meanwhile, ensures that the solution adheres to the system’s 

reliability, lifespan, and renewable energy targets. Adjusting the algorithm's parameters is a dynamic 

step in this process, allowing the AI algorithm to fine-tune its performance and adapt based on real-time 

feedback from the optimization process. The population initialization is a core component of the 

diagram, illustrating how AI techniques such as Genetic Algorithms, PSO, and DE begin with an initial 

random set of solutions. From here, the optimization process employs strategies like exploration and 

exploitation, where the algorithm searches for the most promising solutions while adjusting 

configurations in real-time. For example, PSO adjusts particle positions to find optimal solutions, and 

algorithms like Firefly or Dragonfly are inspired by natural behaviors to explore the solution space. 

Following the optimization process, fitness evaluation ensures that each solution is tested against the 

pre-set objective criteria, such as COE or NPC. The iterative nature of AI optimization is also 

highlighted in the diagram, showing how the system repeatedly refines its solutions through cycles of 

adjustment, validation, and comparison. The diagram emphasizes the importance of convergence, where 

the iteration process continues until an optimal or satisfactory solution is found. Finally, the flowchart 

addresses the stopping conditions, ensuring that the algorithm halts either when optimal conditions are 

met or when further improvements are not achievable. If the solution meets the necessary requirements, 

the algorithm concludes, delivering the best configuration for the HES. Otherwise, the system undergoes 

further iterations for refinement. This iterative cycle ensures that the AI sizing process produces reliable 

and economically feasible results for HESs, making it a powerful tool for modern energy system design. 
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4.3 Hybrid methods 

Hybrid methods in the sizing of HESs combine the advantages of different optimization techniques to 

achieve more accurate, reliable, and efficient solutions. By combining the strengths of conventional 

methods, AI techniques, and heuristic methods, these approaches are able to address the complex 

problem of sizing HES (Victor O. & Nichodemus A., 2015).  

Aykut et al. (Güven et al., 2024) focused on enhancing sustainability by minimizing carbon emissions 

at a university campus through the use of a HES that integrates wind turbines, PV panels, batteries and 

a diesel generator. The selection of system components was optimized using recorded data on wind 

speed, ambient temperature, solar radiation, and load demands to achieve cost-effectiveness and 

efficiency under varying environmental conditions. For the aim of optimization, gray wolf optimizer 

and cuckoo search algorithms were used within MATLAB/Simulink to determine the optimal size of 

the HES components. In the context of optimization tasks, the off-grid model demonstrates enhanced 

performance when the GWOCS algorithm is applied, providing quicker and more reliable outcomes to 

other methods.  

 

Fig. 3. Comprehensive diagram of AI algorithms for optimizing HESs sizing. 
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In (Medghalchi, 2023), the study presents an innovative approach for evaluating the integration of solar 

PV systems and wind turbines, and energy storage systems, including both Electrolyzer-Fuel Cell and 

Battery. The primary aim is to lower the overall cost of energy while ensuring a certain percentage of 

energy is sourced from renewables. To achieve this objective, the research proposes a combined 

optimization method that mixed PSO with GA. The study finds that a mix of wind and solar power with 

battery storage outperforms electrolyzer-fuel cell systems, reducing energy costs by 33-35% and 

enhancing supply reliability by 16-20%. 

5. SUMMARY, CHALLENGES AND FUTURE SCOPE 

The comprehensive review explores in detail the current methodologies used for sizing HES, combining 

renewable and non-RESs to offer efficient and reliable energy solutions. It covers the various 

configurations of HES, evaluation metrics for assessing performance and economic viability, and 

explores both traditional and AI-based optimization methods. These methodologies have significantly 

contributed to the design and sizing of HES, optimizing for cost-effectiveness, reliability, and 

environmental sustainability. 

However, the field faces several challenges, including the complexity of integrating diverse energy 

sources, addressing the intermittency of renewables, high initial costs and economic analysis, and 

minimizing environmental impacts. The future scope involves tackling these challenges by innovating 

optimization techniques, enhancing energy storage solutions, and focusing on cost reduction. This effort 

aims to improve the feasibility and reliability of HES, making it an essential part in the shift towards 

more sustainable energy systems.  

Table 1 shows a comparison of different sizing methods for HES without delving into technical 

specifics. It highlights the diversity of approaches used in this field, from traditional techniques to more 

advanced AI and hybrid methods. Each method brings a unique perspective to optimizing the design 

and operation of HES, illustrating the evolution of technology in this area. The table emphasizes how 

traditional methods, though simpler, may not be sufficient for addressing the complexity of modern 

energy systems, especially with the increasing integration of RESs. The diversity in methodologies also 

underscores the importance of selecting the right approach based on the specific objectives of a project, 

taking into account the complexity of the system, the available resources, and the desired outcomes. AI 

methods, with their ability to handle multi-objective optimization problems, represent a significant 

advancement over traditional approaches. These techniques allow for a more refined and efficient design 

process, improving the system’s ability to balance cost, reliability, and sustainability. Meanwhile, hybrid 

methods emerge as a promising solution that combines the strengths of both traditional and AI 

techniques, offering a more adaptable and flexible approach to HES optimization. This comparative 

approach aids in understanding how the field has evolved and points toward future innovations that will 

further enhance HES performance. 

This comprehensive review has explored various methods for sizing HES, focusing on traditional, AI, 

and hybrid methods. Each approach offers unique advantages and faces specific limitations, especially 

when applied to complex energy systems that aim to balance cost, reliability, and sustainability. The 

Table 2 summarizes the main advantages and disadvantages of the three methodologies discussed in this 

paper. This table serves to highlight the trade-offs between simplicity, computational efficiency, and 

optimization performance. As can be observed, while traditional methods are relatively easier to 

implement, they fall short in handling the complexities of modern HES. On the other hand, AI-based 

methods excel in optimization but require more computational power and expertise. Hybrid methods 

strike a balance, combining the strengths of both, but introduce complexity in implementation. These 
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observations reinforce the need for careful selection of sizing techniques based on the specific 

requirements of each HES. The growing complexity of energy systems suggests a promising future for 

hybrid methods, which could offer better results by balancing the strengths of different AI algorithms. 

Table 1 : Recent Advances in Optimization Methods for sizing HESs. 

Methods Sizing 

Techniques 

System Elements Optimization Objectives Reference 

Traditional 

methods 

Iterative 

method 

PV/diesel/Batt COE (Zhang et al., 

2013) 

Probabilistic 

method 

PV/WT/Batt LPSP (Yang et al., 

2003) 

AI 

Methods 

GWO PV/WT/BM Total net present cost (Tabak et al., 

2022) 

IGOA PV/WT/Batt Total net present cost 

Loss of energy probability 

(Naderipour et 

al., 2022) 

ISSR PV/WT/PSHS LCOE (Bhimaraju et 

al., 2022) 

NSGA-II PV/WT/HESS Total cost of electricity 

LPSP 

(Abdelkader et 

al., 2018) 

PSO PV/WT/Batt COE (El Boujdaini 

et al., 2022) 

mOPA PV/BM/Electro-

lyzer/ hydrogen 

tank/fuel cell 

COE 

LPSP 

Consumption of extra energy 

(Emam et al., 

2023) 

DHS PV/BM/Batt NPC (Mishra et al., 

2023) 

MOMFA PV/Grid/Batt NPV (Le et al., 

2023) 

MDA PV/WT/Grid NPV (Tittu George 

et al., 2023) 

DE PV/micro-

hydropower/biogas/ 

Batt/BM/WT 

Total net present cost (Kamal et al., 

2023) 

Firefly 

algorithm 

PV/WT/Batt Annual cost (Yuan, n.d.) 

Discrete 

GWO 

PV/BM/Batt NPC (Saha et al., 

2023) 

derivative-

free pattern 

search 

optimization 

PV/WT/Fuel/Batt Capital costs and dynamic 

operating expenses 

(Ali & 

Mohammed, 

2024) 

Hybrid 

methods 

GWOCS PV/WT/diesel/Batt ACS (Güven et al., 

2024) 

PSOGA PV/WT/Batt Weighted average cost of 

energy 

(Medghalchi, 

2023) 
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Table 2: Comparison of Advantages and Disadvantages of HES Sizing Methods (He et al., 2023; 

Thirunavukkarasu et al., 2023) . 

Methods Advantages Disadvantages 

Traditional 

Methods 

- Straightforward and well-

understood. 

- Suitable for simple HES 

configurations. 

- Often use deterministic models, 

which provide clear, predictable 

results. 

- Limited flexibility and scalability for 

complex systems. 

- Requires more time due to trial-and-

error approaches. 

- Often overlooks uncertainties. 

AI Methods - Highly effective for complex and 

non-linear problems. 

- Can optimize multiple objectives 

simultaneously (e.g., cost, reliability). 

- Faster convergence to solutions. 

- Requires significant computational 

power. 

- Difficult to interpret or understand 

the underlying mechanics. 

- Susceptible to overfitting in certain 

cases. 

Hybrid Methods - Combines strengths of traditional 

and AI approaches, providing better 

optimization for complex HES. 

- Balances simplicity with 

computational efficiency. 

- More complex to implement and 

manage due to the combination of 

techniques. 

- May require more advanced 

knowledge to fine-tune the system. 

6. CONCLUSION 

The article provides a comprehensive overview of the design, sizing, and control of integrated renewable 

energy and electrical power systems, considering a wide range of factors including technological, 

economic, and environmental influences. Highlighting the complexity of designing an efficient 

electrical power system, it underscores the need to select key influencing factors for system design. The 

use of computational tools and AI techniques such as particle swarm optimization and genetic algorithms 

for system sizing is discussed, as well as new AI methods that could potentially improve the design 

process. However, it is acknowledged that there are challenges in implementing these techniques due to 

the increasing number of variables. The article proposes integrating hybrid methodologies to overcome 

these limitations by optimizing the sizing of both renewable and non-renewable energy systems within 

electrical power systems. This literature review provides significant value in addressing the challenges 

and complexities associated with research on the sizing and optimization of electrical power systems 

that combine photovoltaic solar and wind sources. 
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