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 Estimating the ‘State of Charge’ (SOC) is a complex endeavour. Data-driven 

techniques for SOC estimation tend to offer higher prediction accuracy 

compared to traditional methods. With the progression of Artificial Intelligence 

(AI), machine learning has found extensive applications across various fields 

such as infotainment, driver assistance systems, and autonomous vehicles. This 

paper categorizes the machine learning techniques utilized in Battery 

Management System (BMS) applications and employs a modern supervised 

neural network approach to predict SOC. Accurate SOC estimation is crucial to 

prevent battery failures in critical situations, such as during heavy traffic or 

when traveling with limited access to charging stations. Long Short-Term 

Memory (LSTM) networks are particularly adept at classifying, processing, and 

predicting based on time series data. These models are capable of capturing and 

retaining features over time, making them suitable for this study. The model's 

predicted SOC closely matches the true SOC, and the SOC prediction error 

remains nearly zero even with a large sample of input data. 
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1. INTRODUCTION 

The ongoing transition in the automotive industry from Internal Combustion (IC) engines to electric 

mobility necessitates electric vehicles with mileage reliability comparable to that of IC engines. (Li, Z., 

Huang, J., Liaw, B.Y., et al., 2017). This can be accomplished by utilizing batteries with high power 

and energy density. However, opting for a battery pack with the highest capacity would increase the 

weight of the Electric Vehicle (EV), thereby impacting its overall performance. Thus, there is a trade-

off between battery capacity and EV mileage (Landi, B.J., Ganter, M.J, et al., 2009). Lithium-ion battery 

packs fulfill the requirements of EVs and Hybrid Electric Vehicles (HEVs), yet their durability, safety, 

and lifespan remain concerns from a functionality standpoint. SOC, temperature, and the 

charge/discharge cycle number serve as essential parameters to evaluate the lifetime of lithium-ion 

batteries (Li, J., Cheng, et al., 2018). The battery management system (BMS) plays the major role in 
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controlling and monitoring in all aspects of battery operations in an EV (Lim, D.J., Ahn, et al., 2016). 

A Battery Management System (BMS) is a single functional module that basically deals with balancing 

cells, monitoring cell temperature, estimating battery pack state of health, and State of Charge (SOC), 

which typically consists of a specific type and number of cells (e.g.; Nissan Leaf has 192 cells while the 

Tesla Model S consists of 7,104 cells). SOC is the most critical of parameters that, in a sense, might let 

EV drivers predict how much distance could be traveled based on the remaining battery capacity. The 

absence of accurate estimation of SOC causes battery failure when an electric vehicle is subjected to 

heavy traffic conditions or traveling to areas with very poor access to charge stations. 

Estimation of SOC is a difficult and rather complicated task as it is a non-linear function dependent on 

temperature and current. SOC estimation methods are further divided into four subcategories : direct 

measurement, model-based, book-keeping estimation, and computer intelligence-based methods 

(Xiong, R., Cao et al., 2017). Data-driven approaches have a much higher prediction performance as 

they've been based on data science and machine learning algorithms than traditional techniques for SOC 

estimation (Lim, D.J., Ahn, et al., 2016). Because of the advancement in artificial intelligence (AI), 

machine learning is now already in use in almost all its possible application areas, especially in 

infotainment, driver assistance, and driverless vehicles. Because of its exceptional learning capabilities, 

artificial intelligence is dominating businesses (Xiong, R., Cao, J, et al., 2017). In order to accurately 

estimate SOC, researchers are working to integrate AI into battery management systems. For an EV 

application, this promotes the development of an effective prediction technique that is appropriate, 

accurate, adaptable, and able to precisely estimate SOC (Pai, S., Sindhu, M.R, et al., 2019). Regression 

AI approaches fall into four categories: neural networks, support vector machines (SVM), decision trees, 

and linear regression (Huria et al., 2013). For linear data, the first two methods work well. The work 

focuses on employing Artificial Neural Networks (ANN) and SVM models for accurate SOC prediction 

because batteries have non-linear features (Tejaswini P., Sivraj P., 2020). 

While these packs of batteries present several barriers against electric vehicles, they should be monitored 

for their state of health in normal or abnormal conditions throughout the runtime. Another battery cell 

monitoring is the status and operation indications of that battery (Bliss G Carkhuff et.al., 2018). 

Moreover, voltage, current, and temperature controls should be highly observed as the battery cells are 

protected from over-current and over-voltage influences (Thomas Morstyn et al., 2015 ; Huazhen Fang 

et al., 2016). Feature extraction and data-driven methods have been used to generate data which can 

analyze the consumption pattern for electric vehicles and predict future status of the battery (Ravi S et 

al., 2013 ; Guangzhong Dong et al., 2017). This is the voltage, current, and temperature recording for 

the battery cells which are done using different sensors and data-acquisition systems (Tingting Dong et 

al., 2008 ; RM Williams et al., 1983). Protect electric car batteries from both overcurrent or overvoltage 

when charging or discharging, whether on the road or on the grid. So that it will be well protected and 

it will extend its life cycle, battery management in different modes is essential (Huazhen Fang et al., 

2016 ; Quan O et al., 2018). The physical properties make the accessibility to internal parameters of the 

battery very difficult. Lithium-ion batteries are highly nonlinear due to certain time-variant factors, and 

accurate models are required by BMS to handle such behaviors and predict its internal properties and 

states. Different theories have been proposed by many scholars to infer SOC, SOH, RUL, SOP, and 

SOF. Though much research is being done to improve battery performance but still, battery modeling 

doesn't assure accuracy. (Prashant S et al., 201 9; Dickson et al., 2015). 

Electric motors and associated accessories in EVs are powered by battery cells connected in series. 

These cells operate under distinct conditions than the battery's charging and discharging processes. 

Every cell may have a different voltage and current than the others, which could cause certain cells to 

be overcharged or undercharged. Because of the deformation of the battery's anode, cathode, and 

separator, these might lead to early damage to certain cells and occasionally internal short circuits. 
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Balance of the cells allows them to achieve effective energy distribution and cell voltage levels with 

regard to overcoming such a problem in EVs (Xin Cao et al., 2017; Ming Liu et al., 2017). Thus, it 

requires an efficient battery power management control (PMC) to ensure maximization of consumption 

while minimizing losses and distributing the cell energy between electric vehicle batteries. An efficient 

BMS can reduce the number of charges and discharges of a battery over the lifespan of that battery. 

Thus, the PMC brings to the fore numerous electrical gadgets and patents, which is, currently, one of 

the most significant subjects in industrial and automotive research. 

When the battery is in the discharging mode, it may be exposed to under-current and under-voltage. 

While in the charging mode, the battery may be exposed to over-current and over-voltage, and 

consequently, its temperature will increase rapidly (Xuning Feng et al., 2018). Therefore, the battery 

protection is indispensable in BMS and plays a crucial role. In the past few years, many accidents have 

been witnessed and have led to life and financial losses. These issues prompted the battery manufacturers 

to develop solutions for temperature control and heat management that guarantee operations in the 

permissible and tolerable ranges of the cells and prevent from thermal runaway and internal short circuit 

(Xuning F et al., 2016 ; Jianan Z et al.,2018). In order to implement BMS in EV, a combination of 

hardware and software is always needed. With the development of the wireless charging of EVs over 

the sparse charging stations in the smart network, communication and networking as one of the 

subsections of BMS will affect the overall battery performance (Vaka R et al., 2018). Machine learning 

(ML) is a broad topic with a large variety of applications. A comprehensive classification of ML is 

presented in (Shree K S et al., 2019), which describes the different techniques of machine learning. This 

paper provides an appropriate classification of machine learning techniques that have been implemented 

in BMS applications. It also applies modern supervised neural network approach to predict SOC.  

2. OVERVIEW OF MACHINE LEARNING APPROACHES 

Fig 1 shows the use of machine learning approaches in BMS applications. In this classification, the 

machine learning methods are divided into three main groups ; (A) supervised learning, (B) 

unsupervised learning, and (C) reinforcement learning. 

2.1 Supervised Learning 

1) Artificial Neural Networks (ANN) : Biological neural networks serve as the foundation for the 

ANN idea (Ardeshiri Rouhi R et al., 2020). Activation functions, like Sigmoid functions, are employed 

in ANNs to connect their nodes and add up their weights. Back-propagation, a stochastic gradient 

descent technique, is typically used to train the ANN neural nodes. The ANN class is further subdivided 

into two groups: 

 Classic Neural Networks : Wavelet neural networks (WNN), feed forward neural networks 

(FFNN), radial basis functions (RBFN), and extreme learning machines (ELM) are all included 

in this subgroup (Ardeshiri Rouhi R et al., 2020). 

 Modern Neural Networks : They are usually called deep neural networks. Since they have 

multiple layers, these networks gradually extract more and more information from the input. 

The main types of deep learning methodology, which are referred to as deep NNs, are recurrent 

neural networks (RNNs), convolutional neural networks (CNNs), and advanced versions of 

them, such as long short-term memory networks (LSTM). Lately, researchers have also started 

looking into the current trends of combining deep learning techniques for more effectiveness 

(Ardeshiri Rouhi R et al., 2020; Hasim S et al., 2014). 
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Fig1. Machine Learning in BMS Applications 

2) Support Vector Machine (SVM): Support Vector Machines are supervised learning models with 

their own learning algorithms for data analysis in both classification and regression (Harris Drucker.,et 

.al.,1997). It has been borrowed from kernel regression and has been found suitable for very many linear 

and nonlinear regression applications such as support vector regression and relevance vector machine 

(Ardeshiri Rouhi R. et al., 2020 ; Hasim S et al., 2014). 

2.2 Unsupervised Learning 

The two main goals of this group which are used in different applications are clustering the data into 

groups by similarity and dimensionality reduction to compress the data while maintaining its structure 

and usefulness data. This group includes Gaussian process regression (GPR), kernel density, Boltzmann 

machine, and isometric feature mapping (ISOMAP) (Man C et al., 2019 ; Yuecheng Li et al., 2019). 

2.3 Reinforcement Learning 

This form of machine learning is called reinforcement learning. An agent learns to behave in this 

environment by taking actions and finding out what happens as a result of those actions (Leslie P K., 

et.al. 1996). The RL main tasks involve policy, reward function, value function, and a possible model 

of the environment which is useful for decision making for a problem. In the past years, this area has 

seen many improvements brought by researches (Man C et al., 2019 ; Yuecheng Li et al., 2019), such 

as Monte Carlo and Q-Learning methods, among others. 

3. EMERGING TRENDS 

Researchers in (Sagar S et al., 2023) mainly focus on the study of battery management system to enhance 

the power performances of electric vehicles by controlling key parameters like current, voltage, 

temperature, and SOC (State of Charge). A secondary loop cooling scheme is used for the battery 

thermal management system in (X. Kuang et al., 2020), and based on this, a phased control strategy for 

adjusting the compressor speed according to the battery temperature interval is proposed. This study 

(Yixin Wet al. 2024)established a control-oriented BTMS model with adequate precision. A fast 
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charging-cooling joint control strategy for the battery pack was proposed, and a thermal management 

strategy suitable for diverse requirements was optimized using a MOO algorithm. 

This article (Romain M et al., 2021) reports the results of an experimental ageing campaign of batteries 

in fast charging conditions in order to fill existing knowledge gaps. One novelty comes from the 

comparison of three commercial 18650 lithium-ion cells, which represent different electrode materials 

and different internal designs for cells oriented more towards energy or more towards power 

applications. These strategies present several contributions to the design of energy storage systems for 

electric vehicles, including the choice of a cell, design of thermal management systems, and design of 

optimised fast charging protocols. With the assembly of more than 200 three-electrode test cells, 

researchers in (Johannes Sieg et al., 2022) could reveal that the fast-charging capability of the 

investigated type of lithium-ion pouch cell was not reduced by aged electrode material, but by electrolyte 

consumption in particular.  

4. METHODOLOGY 

It is frequently used as the basic framework for recurrent neural network (RNN) systems in speech 

recognition, natural language processing, or other uses of sequences. However, such networks do not 

possess the capabilities of long-short term memory (LSTM). The RNN structure is more straightforward 

than LSTM, comprising an input section, hidden-state components, and an output section. Because it 

has a greater number of memory cells and gates, an LSTM framework is able to selectively retain or 

forget particular pieces of information across extended spans of time. The architecture of an LSTM (see 

Fig 2) can also be understood as a series of such recurring "blocks" or "cells," each of which contains a 

group of connected nodes. 

 

Fig 2 LSTM Architecture 

The current observation or token in the series is represented by the input vector x_t, which is fed into 

the LSTM at each time step. Hidden state vector h_t, represents the current “memory” of the network 

and this hidden state is initialized to a vector of zeros at the beginning of the sequence. Long-term data 

is stored throughout the sequence by the LSTM through the maintenance of a cell state vector called c_t. 

At the start of the series, a vector of zeros is used to initialize the cell state. To regulate the information 

flow throughout the network, LSTM employs three different kinds of gates: 

 Forget Gate: It receives two inputs; the current input, x_t, and the prior hidden state, h_{t-1}. 

It then outputs a vector of values, ranging from 0 to 1, indicating how much of the previous cell 
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state should be retained and how much should be "forgotten." The LSTM may "erase" or 

"remember" specific data from the previous time step. 

 Input Gate: This gate receives the current input, x_t, and the previous hidden state, h_{t-1}. It 

then outputs a vector of values, ranging from 0 to 1, indicating how much of the current input 

should be added to the cell state. The LSTM may "add" or "discard" new information to the cell 

state in a selective manner. 

 Output Gate: This gate receives the current input (x_t), the previous hidden state (h_{t-1}), 

and the current cell state (c_t). It then produces a vector of values (between 0 and 1) that indicate 

the percentage of the current cell state that should be output as the current hidden state (h_t). 

When calculating the output, the LSTM can "focus" or "ignore" specific portions of the cell 

state. 

The network's prediction or encoding of the current input is represented by a vector, y_t, which is output 

by the LSTM at each time step. The LSTM is ideally suited for tasks that require modelling long-term 

dependencies or sequences because of its ability to selectively "remember" or "forget" information over 

time due to the combination of its cell state, hidden state, and gates. For training the LSTM model, the 

input data sequence is applied to the LSTM cell. The LSTM (Long short term memory) model is then 

trained using the keras optimizer “Adam”. The activation functions are selected as “SELU” (Scaled 

Exponential linear unit). The model loss function is “Huber” and metrics such as “MSE”, “MAE” and 

“MAPE” are described during the execution of program written in python.  

5. RESULTS AND DISCUSSION 

For creating the machine learning model LG18650HG2 Li-ion battery data was obtained from 

https://data.mendley.com/datasheets/cp34733x7xv/3. The data sheet is read using command instructions 

and parameters from the datasheet including, “charge”, “temp”, “discharge cycles” are obtained. LG 

train, test stats are obtained from the data sheet which includes time-stamp of “voltage”, “current”, 

“temperature”, “power”, “capacity”, “voltage average”, “current average”, “power average” detailing 

their count, mean, min, std, 25%, 50%, 75% and max values (Table 1). 

Table 1. Time stamp of various parameters used to train the model 

Time Stamp Count Mean Std Min 25% 50% 75% Max 

Voltage 1766953 3.66610 0.262907 2.788130 3.495400 3.672890 3.861010 4.209560 

Current 1766953 -1.32756 2.560378 -18.098280 -2.55154 -0.94246 -0.097060 6.004720 

Temperature 1766953 7.85238 12.53895 -9.884900 -0.31548 9.359110 23.976150 26.289630 

Power 1766953 -4.57294 8.942017 -50.875355 -9.20468 -

3.438450 

-0.385844 25.184354 

Capacity 1766953 0.48665 0.268261 0.000000 0.269442 0.474609 0.717070 0.978041 

Voltage 

Average 

1766953 3.70079 0.227465 3.094400 3.521779 3.695029 3.890524 4.168740 

Current 

Average 

1766953 -1.28926 0.720794 -3.711826 -1.71516 -1.16092 -0.764838 1.225048 

Power 

Average 

1766953

. 

-4.49477 2.448886 -11.434436 -5.98558 -4.12078 -2.685925 5.168611 
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Table 1 represents the dataset with a count of 1766953.0 values which is used to train the model. The 

mean, std, min, 25%, 50%, 75% and max valus of these data are obtained for the training model.  Various 

parameters (voltage, current, temperature, etc) are plotted for the same as represented in fig 3. 

 
 

(a)                                                                                       (b) 

 

 
 

(c)                                                                                       (d) 

 

 
 

( e)                                                                                (f) 

Fig 3. Plots of (a) Voltage (b) Average Voltage (c) Current (d) Average Current (e) Temperature (f) 

Capacity for training dataset 

Fig 3(a) represents the variation in voltage value over the entire range of dataset with a min value of 

2.78 and a maximum value of 4.2. Fig 3 (b) represents the average voltage with min value as 3.09 and 

max value as 4.16. Fig 3(c) and (d) represent current and average current for the training dataset with 

min and max values as -18.09, -3.71 and 6.0, 1.22 respectively. The temperature and capacity plots are 

shown in fig 3 (e) and (f) respectively with mean values of 7.85 and 0.486. Table II below shows the 

dataset which is used to test the model. 
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Table 2 represents the dataset with a count of 104286.0 values which is used to test the model. The time-

stamp parameters are plotted for test dataset as shown in Fig. 3. 

Table 2. Time stamp of various parameters used to test the model 

Time Stamp Count Mean Std Min 25% 50% 75% Max 

Voltage 1042865 3.677300 0.261296 2.786280 3.496750 3.688530 3.884600 4.200460 

Current 1042865 -1.099719 2.359092 -18.07018 -2.19552 -0.62575 -0.08428 6.00217 

Temperature 1042865 6.917488 12.07144 -10.09522 -0.42063 9.14879 23.76583 26.81543 

Power 1042865 -3.778445 8.247301 -50.86696 -7.92974 -2.31815 -0.32107 25.181295 

Capacity 1042865 0.483628 0.267320 0.000000 0.258047 0.493902 0.713217 0.955909 

Voltage 

Average 

1042865 3.704194 0.229102 3.049703 3.523453 3.715520 3.899700 4.110379 

Current 

Average 

1042865 -1.097604 0.727766 -3.810302 -1.33660 -0.88870 -0.52397 -0.309855 

Power 

Average 

1042865 -3.823480 2.438030 -11.88619 -4.54066 3.073495 -1.88738 -1.233941 

 

(a)                                                                                     (b) 

    

(c)                                                                                     (d) 

      

(e)                                                                                     (f) 

Fig 4. Plots of (a) Voltage (b) Average Voltage (c) Current (d) Average Current (e) Temperature (f) 

Capacity for Test dataset 
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Fig.4 (a) represents the variation in voltage value over the entire range of dataset with a min value of 

2.78 and a maximum value of 4.2. Fig. 4 (b) represents the average voltage with min value as 3.04 and 

max value as 4.11. Fig. 4(c) and (d) represent current and average current for the training dataset with 

min and max values as -18.07, -3.81 and 6.0, -0.309 respectively. The temperature and capacity plots 

are shown in Fig. 4 (e) and (f) respectively with mean values of 12.07 and 0.267. 

Fig.5 represents the train dataset without normalization. To train the model the input parameters must 

be defined in terms of “0” and “1” therefore normalization is applied to the train dataset and the plot is 

represented in Fig. 6.  

 

Fig 5. Train data distribution with no normalization 

 

Fig 6. Train data distribution with normalization 

After normalization a pair plot is obtained for train dataset involving voltage, current and temperature 

as shown in Fig. 7. 
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Fig 7. Pair plot for LG training dataset 

Table. 3 Metrics and model loss function 

Sr, 

No 

Loss MSE MAE MAPE RMSE Val_los

s 

Val_ms

e 

Val_map

e 

Val_rm

se 

Epoc

h 

95 0.000

428 

0.00085

5 

0.0137

67 

259.84246

8 

0.0292

46 

0.0015

55 

0.0361

95 

700.7507

93 

0.05576

8 

95 

96 0.000

443 

0.00088

6 

0.0148

63 

256.82077

0 

0.0297

61 

0.0014

23 

0.0000

68 

708.7507

93 

0.05334

0 

96 

97 0.000

464 

0.00092

7 

0.0145

30 

249.46897

9 

0.0304

53 

0.0024

21 

0.0470

37 

718.5328

98 

0.06958

4 

97 

98 0,000

512 

0.00102

5 

0.0140

94 

266.52944

9 

0.0320

15 

0.0019

20 

0.0376

44 

716,5371

09 

0.06196

7 

98 

99 0.000

423 

0.00084

6 

0.0138

97 

253.49726

93 

0.0290

83 

0.0014

23 

0.0329

37 

697.9733

89 

0.05334

9 

99 

After 99 epochs it can be seen that the model loss function has stabilised as shown in Table 3. The values 

of “MSE”, “MAE” are similar too. Fig 8 shows a plot of training v/s validation loss. It is clear from the 

plot that as number of epochs increase the validation loss reduces. 

Predicted value of SOC is close to the true value of SOC which is shown in fig 9 (a) whereas fig 9 (b) 

represents the predicted error distribution over the entire range of count. For a larger count of input data 

(1750) the predicted error (SOC) is close to “0”. Hence we can say that the amount of predicted error 

(SOC) is quite negligible. 
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Fig 8. Training v/s validation loss 

  

(a)                                                                                         (b) 

Fig 9 (a) Predicted SOC v/s True SOC. (b) Prediction error distribution 

6. CONCLUSION 

As EVs face many challenges due to the battery packs, it is necessary that battery conditions should be 

monitored in normal and abnormal conditions during run-time Given the physical properties of battery, 

there is a challenge to access its internal parameters. Also, lithium-ion batteries, possess nonlinear 

behaviour’s owing to some time-variant parameters. Thus, accurate models are needed in BMS to 

address these behaviour’s and to estimate the battery internal parameters and states. Now-a-days, AI is 

ruling industries due to its extraordinary learning capabilities. Researchers are aiming to make use of AI 

in battery management systems for accurate estimation of SOC. This encourages developers to 

determine an efficient prediction strategy that is best suited, accurate, adaptive and is capable of 

estimating SOC precisely for an EV application 

Dr. Philip kollmeyer performed various tests on a brand new 3Ah LG HG2 cell at McMaster university, 

Hamilton, Canada and the data collected during the test was made available on 

https://data.mendley.com/datasheets/cp34733x7xv/3. which is used by researchers worldwide for 

designing SOC estimator using different approaches. We have used the Long short term Memory 
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(LSTM) to predict SOC which is compared with True SOC. Long short-term memory (LSTM) 

networks, a variant of Recurrent Neural Networks (RNNs), excel at learning sequence dependencies in 

prediction tasks. Unlike typical feedforward neural networks, LSTMs incorporate feedback connections. 

They are widely used in generative models, particularly in natural language processing. Moreover, 

LSTM networks are highly effective for tasks involving classification, processing, and prediction of 

time series data. These models can capture and retain features over extended periods, making them ideal 

for this study.  

SOC plays a very important role in BMS and is a key indicator towards the state of charge. A fully 

charged battery has an SOC of 1 while a completely discharged battery has a SOC of 0. Predicting 

battery SOC with high accuracy assures avoiding many problems such as overcharging or discharging 

during a long journey. The main goal of SOC measurement is to determine how much energy a battery 

still has at specific time and conditions with acceptable accuracy. Experimental results show that our 

models achieved high accuracy in predicting SOC, with the error in the predicted SOC being nearly 

zero, even for large input data samples.  
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