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 Large scale integration of distributed generation of medium and low voltage 

(LV) networks can be achieved by exploiting the Multi-Microgrid (MMG) 

concept, worldwide due to the increasing penetration of renewable energy 

sources. A modern technology based on the use of microgrids where DG 

penetration is beneficial if optimally placed. A new radial power system 

architecture allows the coordination between distributed generation units and 

Microgrids (MGs) and thus the operation of such a system in islanded mode. 

Different microgrid models are developed for optimal location and capacity of 

renewable energy RES. In this context, this paper deals with an optimal 

approach to find the best location and sizing capacity of DG units in a radial 

electrical system (RDS) using metaheuristic optimization algorithms. The 

objective was to minimize the total active power losses with the assurance of a 

good voltage profile. The application of Particle Swarm Optimization (PSO) on 

the IEEE 33-bus network shows the validity of the proposed algorithm to 

minimize power losses and incorporate optimal micro-grid in the appropriate 

buses, which gives the optimal capacity and location of microgrid in the 

distribution network. 
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1. INTRODUCTION 

In recent years, economic concerns, environmental pollution problems and global warming have led to 

significant changes in electrical network. Moreover, there is a novel trend of introducing clean energy 

resources and storage devices at the radial distribution system level for improvements. Energy 

consumers, engineers and industry owners have shown great interest in local connection of green energy 

resources at the distribution levels. With the increase in the penetration level of such resources, 

conventional distribution systems are transformed into multiple interconnected systems, and the 

                                                           

* Corresponding author, E-mail address: koubanour@gmail.com  

https://doi.org/10.54966/jreen.v28i1.1319


                                         Journal of Renewable Energies 28 (2025) 53 – 67 

54 

evolution of local energy provisions gives rise to the conception of microgrid (MG)  (Daryani at al., 

2019; Hadidian-Moghaddam at al., 2017). MGs are mainly built from renewable energy sources (RES) 

focusing on the independence of local energy supplies (Phommixay, 2021). Microgrid consists of a low 

voltage network composed of loads, renewable energy sources and distribution generating units (DGs), 

energy storage devices, load and control devices together and supplies electricity to the consumer side 

(Yang et al.,2016). Meanwhile, microgrid is able to quickly respond to electricity demand, also enhance 

the reliability, efficiency, resilience and security of power supply against unexpected and critical events 

(Huang et al., 2008). Interconnecting multi-area MGs through AC and DC power flow tie-lines and 

building a resilient interconnected multi-microgrid (MMG) energy system has attracted more attention 

among researchers, linking MGs strengthens the system against extreme weather conditions and natural 

disasters and enhance the dynamic performances of the whole grid, while maintaining the flexibility to 

operate in model isolated areas and exploiting the advantages of MGs (Kargarian et al., 2015). However, 

the evolution of multi-Microgrids (MMGs) shows novel challenges in modern power systems. 

Specifically, the issue of synchronizing operations of systems that may function independently, 

interlinked with other Microgrids, and/or linked to primary grids, each with diverse objectives and 

constraints (e.g., cost optimization, reliability enhancement, emission reduction, etc.) emerges. This 

issue was framed by considering various facets of the distribution system, such as the stochastic and 

intermittent characteristics of green power resources and the probabilities or hourly load profile 

(Madureira et al., 2011). To have a practical design, a typical fuel mix of DER consisting of wind 

turbines, photovoltaic (PV) modules and diesel generators was considered. After designing the 

microgrids and assigning the DERs, as a public service action, to three different scenarios are followed 

to improve the operation of constructed microgrids (Arefifar et al., 2018). In the goal to combine both 

of the economic aspect and the technical issues related to the microgrid operation model, the employed 

strategy involves many fitness functions, where the optimization issue was modelled as a multi-objective 

problem to minimize at same time the energy losses and find the best capacity with optimal microgrid 

connection bus. The strategically positioned Distributed Generation (DG) could effectively minimize 

active power loss and improve the voltage profile. The optimization problem takes into account the 

voltage safety constraint, thereby significantly enhancing the operational efficiency of active 

distribution networks in grid-connected mode. This method not only boosts the performance of power 

grids but also fortifies the resilience of intelligent operation modes (Samala et al., 2017). However, the 

best location and capacity of DGs in the radial network is an important problem issue. A similar 

technique has been developed to solve the optimal problem of integrating microgrid containing 

photovoltaic, wind generator, battery, diesel generator and constant and variable load for the 

improvement of radial distribution network. The main difference between a microgrid and a distribution 

grid is that in microgrids, the distributed energy resources are directly connected and operate in a 

coordinated manner, whether in grid-connected or islanded mode. Meanwhile, since the microgrid often 

consists of a large number of devices, the nature-inspired PSO algorithm was used to solve the multi-

objective issue and find the best solution for the optimal size and bus connection of the MGs with 

minimization of active power loss (Ramakrishnan et al., 2018). It has been demonstrated that the optimal 

positioning of Microgrids (MGs) in Radial Distribution Systems (RDS) utilizing the Particle Swarm 

Optimization (PSO) algorithm yields superior loss reduction and rapid convergence characteristics 

(Angalaeswari, 2015). The PSO algorithm has garnered significant attention from researchers owing to 

its efficacy and simplicity. Originating from the dynamics of bird flight and fish schooling, the PSO 

algorithm represents a versatile and robust population-based optimization technique that has been 

widely adopted by researchers for addressing engineering challenges and various engineering issues 

(Eberhart, 1995). 
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This paper addresses a multi-objective optimization (MOO) method based on particle swarm 

optimization (PSO) was proposed to solve the optimal MG sizing and placement problem in a radial 

distribution power system with reliability considerations. The proposed method was implemented on 

the distribution networks of IEEE 16 bus and IEEE 33 bus systems, where obtained results are compared. 

The remainder of this document is structured as subsequent sections. Section 2 demonstrates the MG 

modelling. Section 3 presents the problem formulation. Section 4 was devoted to present the application 

study and numerical results. Finally, Section 5 concludes the chapter.  

2. MICROGRID MODEL 

Microgrids are mainly built from renewable energy sources (RES). The investigated MG in this work 

consists of Diesel Generator, Battery Storage, Solar PV Generator, Wind Generator, constant and 

variable Load as shown in Fig.1. The investigated microgrid was connected to the primary grid using 

the point of common coupling (PCC), where during the simulation, the MG was simulated as islanded 

and connected system using the breaker device.   

 

Fig 1. Proposed Microgrid Model. 

2.1 Diesel Generator Model 

The amount of fuel consumed and its cost can be calculated by using the following expressions: 

𝐶𝑑𝑔 = 𝐶𝑓 ∑ 𝐹(𝑡)

𝑡=
365𝑗

10𝑚𝑖𝑛
=52560

𝑡=1

 (1) 

Where, 

𝐶𝑓 : the cost of fuel by liter. 

𝐹(𝑡): the amount of fuel consumed for each hour; and the formula for F(t)is shown below (Yimen et al., 

2020): 

𝐹(𝑡) = 𝐴𝑃𝑑𝑔 + 𝐵𝑃𝑟 (2) 
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Where, 𝑃𝑑𝑔 represent the diesel engine power output and 𝑃𝑟 represent the diesel engine rated capacity. 

During the simulation the values of A and B are equal to 0.246 l/kWh and 0.0845 l/kWh respectively. 

2.2 PV Panel Modeling 

The electricity generated by each solar photovoltaic (PV) module is contingent upon the module's 

characteristics, the intensity of solar irradiation, and the ambient temperature (Liu et al., 2011). The 

following three equations present the mathematical model of a classical photovoltaic solar panel. 

𝐼𝑝𝑣 = 𝑛𝑝𝐼𝑝ℎ − 𝑛𝑝𝐼𝑠𝑎𝑡 × [𝑒𝑥𝑝((
𝑞

𝐴𝐾𝑇
) (
𝑉𝑝𝑣
𝑛𝑠

+ 𝐼𝑝𝑣𝑅𝑠)) − 1] (3) 

𝐼𝑝ℎ = (𝐼𝑠𝑠𝑜 + 𝑘𝑖(𝑇 − 𝑇𝑟))
𝑆

1000
 (4) 

𝐼𝑠𝑎𝑡 = 𝐼𝑟𝑟 (
𝑇

𝑇𝑟
)
3

𝑒𝑥𝑝((
𝑞𝐸𝑔𝑎𝑝

𝑘𝐴
) . (

1

𝑇𝑟
−
1

𝑇
)) (5) 

Where: 

Iph : Photocurrent 

Isat: Module reverse saturation current 

Ipv: PV current   

np: number of cells parallel 

q: Electron charge 

Rs: series resistance of PV cell 

T: Reference temperature 

Tr: Temperature 

S: solar radiation level   

Isso: short-circuit current 

ki: short-circuit current temperature coefficient  

2.3 Wind Power Generation Model 

The wind turbine is a device that converts the kinetic energy of the wind into mechanical energy. The 

power generated by the air mass passing through the active surface S of the wing is derived from the 

kinetic energy of the moving air particles. The efficiency of a wind turbine is influenced by various 

factors, including the design of the blades and the wind speed. The shape and length of the blades 

determine how much energy can be extracted from the wind. Additionally, the wind speed plays a crucial 

role in the power output of the turbine. Higher wind speeds result in more kinetic energy being available 

for conversion. Moreover, the location of the wind turbine also impacts its performance. Placing turbines 

in areas with consistent and strong winds can significantly increase their energy production. Proper 

maintenance and regular inspections are essential to ensure the longevity and optimal functioning of 

wind turbines. By monitoring performance metrics and addressing any issues promptly, the overall 

efficiency and reliability of wind energy systems can be maximized. The wind turbine power is 

determined by: 
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𝑝𝑤 =
1

2
𝑐𝑝(𝜆, 𝛽)𝜌𝐴𝑣𝑤𝑖𝑛𝑑

3  (6) 

Where: 

𝑝𝑤 describes the wind turbine mechanical power. 

𝑐𝑝 presents the power coefficient. 

𝜆 is the optimal tip speed ratio. 

𝛽 is the blade pitch angle (deg). 

𝜌 is the air density (kg/m3). 

𝐴 :is the wind turbine swept area (m2). 

𝑣𝑤𝑖𝑛𝑑  is the wind velocity (m/s). 

2.4 Battery Energy Storage Modeling 

Energy storage (ES) devices operate in two states, namely charging and discharging modes. ES units 

would act as a load when operating in charging mode and would be energy generators during the 

discharging time (Daryani at al., 2019). Two important parameters to represent the state of a battery are 

terminal voltage and state of charge (SOC) as follows (Liu et al., 2011). 

𝑉𝑏 = 𝑉0 + 𝑅𝑏 . 𝑖𝑏 − 𝐾𝑏
𝑄

𝑄 + ∫ 𝑖𝑏𝑑𝑡
+ 𝐴𝑏. exp⁡(𝐵𝑏∫ 𝑖𝑏𝑑𝑡) (7) 

𝑠𝑜𝑐 = 100(1 +
∫ 𝑖𝑏𝑑𝑡

𝑄
) (8) 

Where:  

The internal resistance of the battery is given by 𝑅𝑏  

𝑉0 represents the voltage when no charge is connected to the circuit. 

𝑖𝑏 describes the battery current. 

𝐾𝑏 is the bias voltage. 

Q is the battery capacity. 

𝐴𝑏 represents the exponential voltage and 𝐵𝑏 is the exponential capacity.  

2.6 Load Model 

Load characteristics have a major influence on system stability and dynamics, which is modeled as 

follows:  

𝑆𝐿 = 𝑃𝐿 +𝑄𝐿 (9) 

3. PROPOSED OPTIMIZATION PROBLEM 

An optimization problem was based on the formulation of the objective function, decision variables, 

and constraints. The objective function represents the quantity to be maximized or minimized, the 

decision parameters are the gains under control, and the constraints are the limitations or conditions that 

the solution must adhere to. Once these components are defined, various optimization techniques can 
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be applied to find the best solution (Naimi & Salhi, 2015). The function f represents the function to be 

minimized according to the optimization case, in our case it represents the power losses. It is shown that 

the optimal energy production of MG at the desired bus has the capability to effectively diminish the 

active power loss of a distribution system (Acharya, 2006). Therefore, the main goal of the presented 

study was framed as a minimization of the power loss in the distribution system, with the precise formula 

for active power loss PL being denoted by: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑃𝐿 ⁡= ∑∑[𝛼𝑖𝑗(𝑃𝑖𝑃𝑗 +𝑄𝑖𝑄𝑗) + 𝛽𝑖𝑗(𝑄𝑖𝑃𝑗 − 𝑃𝑖𝑄𝑗)]

𝑛

𝑗=1

𝑛

𝑖=1

 (10) 

Where, 

𝛼𝑖𝑗 =
𝑟𝑖𝑗

𝑉𝑖𝑉𝑗
𝑐𝑜𝑠(𝛿𝑖 − 𝛿𝑗)                                                                                                                         (11) 

𝛽𝑖𝑗 =
𝑟𝑖𝑗

𝑉𝑖𝑉𝑗
𝑠𝑖𝑛(𝛿𝑖 − 𝛿𝑗)                                                                                                                          (12) 

𝑍𝑖𝑗 = 𝑟𝑖𝑗 − 𝑗𝑥𝑖𝑗                                                                                                                                      (13) 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 = ∑ 𝑉𝑖𝑉𝑗[𝐺𝑖𝑗𝑐𝑜𝑠(𝛿𝑖 − 𝛿𝑗) + 𝛽𝑖𝑗𝑠𝑖𝑛(𝛿𝑖 − 𝛿𝑗)]
𝑛
𝑗=1                                                                 (14) 

𝑄𝐺𝑖 − 𝑄𝐷𝑖 =∑𝑉𝑖𝑉𝑗[𝐺𝑖𝑗𝑠𝑖𝑛(𝛿𝑖 − 𝛿𝑗) − 𝛽𝑖𝑗𝑐𝑜𝑠(𝛿𝑖 − 𝛿𝑗)]

𝑛

𝑗=1

 (15) 

where, 

𝑟𝑖𝑗 represents the power line resistance; 

𝑥𝑖𝑗 is the power line reactance; 

𝑍𝑖𝑗 is the power line impendence; 

 𝑉𝑖 is the voltage magnitude at bus i; 

⁡𝛿𝑖 is the voltage angle at bus i;  

𝑉𝑗 is the voltage magnitude at bus j; 

⁡𝛿𝑗 is the voltage angle at bus j;  

 𝑃𝑖 is the active power at bus i; 

𝑄𝑖 is the reactive power at bus i ; 

𝑃𝑗 is the active power at bus j; 

𝑄𝑗 is the reactive power at bus j; 

 n is the total number of power system buses.  

𝑃𝐺𝑖 is the active power generated by the MG at bus i ; 

⁡𝑄𝐺𝑖 is the reactive power generated by MG at bus i ; 

 𝑃𝐷𝑖 is the load active power at bus i; 

 𝑄𝐷𝑖 is the load reactive power at bus i ; 

𝐺𝑖𝑗 is the conductance of the power line; 

𝛽𝑖𝑗 is the susceptance of the power line. 
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The energy production limits is given by: 

𝑃𝐺𝐾⁡𝑚𝑖𝑛 ≤ 𝑃𝐺𝐾 ≤ 𝑃𝐺𝐾⁡𝑚𝑎𝑥 (16) 

where 𝑃𝐺𝐾⁡𝑚𝑖𝑛&𝑃𝐺𝐾⁡𝑚𝑎𝑥 are the minimum & maximum power production limits of MG k respectively. 

The bus Voltage Limits are given by: 

𝑉𝑖⁡𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖⁡𝑚𝑎𝑥 (17) 

where 𝑉𝑖⁡𝑚𝑖𝑛&𝑉𝑖⁡𝑚𝑎𝑥 is minimum & maximum voltage limits of bus i respectively. 

Particle Swarm Optimization Algorithm (PSO) 

Artificial intelligence methods refer to techniques and algorithms used to enable machines to perform 

tasks that typically require human intelligence, such as learning, problem-solving, and decision-making 

(Brunette al., 2009). These methods often involve the use of algorithms like machine learning, neural 

networks, natural language processing, and computer vision to analyze data and make predictions or 

decisions (Oke, 2008). AI is used in a wide range of applications, from autonomous vehicles to medical 

diagnosis to personal assistants (Yang, 2010). ON the other hand, bio-inspired and nature-inspired 

optimization methods are algorithms that are based on the behavior of natural processes or phenomena. 

These algorithms mimic the evolutionary processes seen in nature, such as Simulated Annealing (SA), 

Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and Genetic Algorithms (GA). 

By harnessing the power of nature-inspired algorithms, researchers and engineers are able to solve 

complex optimization problems efficiently and effectively (Nanda & Panda, 2014). These algorithms 

are used in a variety of applications, including engineering design, logistics, and financial modeling 

(Kouba et al., 2019). Particle Swarm Optimization (PSO) is basically based on the behavioral attributes 

of natural drift developed by a particle in a swarm of birds or of fish. In the 1995, PSO algorithm was 

developed by Eberhart & Kennedy (1995) to solve engineering problems (Acharya, 2006). These 

algorithms are inspired by insect swarms (or schools of fish or flocks of birds) and their coordinated 

movements, search for solutions for an optimization problem. The individuals of the algorithm are called 

particles and the population is called a swarm (Brik et al., 2024). PSO algorithm explores the best 

optimal global solutions in an engineering optimization challenge by interacting with the particles within 

a population. Each agent of the population possesses crucial characteristics in the form of particle 

position and velocity. Theoretically, within an optimization scenario, the particle's position denoted as 

"x" and its velocity denoted as "v" represent the current solution and incremental distance for subsequent 

iterations respectively. The adjustment of the position and velocity of the ith particle for successive 

iterations is accomplished by leveraging its existing velocity and the step length between the global 

optimal position and the local optimal position. This adjustment can be mathematically formulated as 

given (Eberhart & Kennedy, 1995). 

𝑣𝑖𝑑
𝑡+1 = 𝜔. 𝑣𝑖𝑑

𝑡 + 𝜑1(𝑃𝑔𝑑 − 𝑥𝑖𝑑
𝑡 ) + 𝜑2(𝑃𝑖𝑑 − 𝑥𝑖𝑑

𝑡 ) (18) 

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1 (19) 

where, 

𝜔 is inertia weight;  

𝑐1⁡& 𝑐2 are the acceleration coefficients;  

t is the iteration count. 
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The diagram of the PSO algorithm is shown in Fig.2. 

 

Fig 2. Flowchart of PSO algorithm. 

4. SIMULATION RESULTS AND DISCUSSIONS 

4.1 Analysis of a Hybrid Multi-Source System 

Fig. 3 shows the schematic of the proposed microgrid system connected to the utility grid, which was 

chosen as the study system used for static and dynamic analysis. Then, a radial distribution grid was 

connected to the microgrid which is consisting of diesel engine, a wind farm, photovoltaic generator, 

storage battery, and two constant and variable loads. The microgrid is connected to the public power 

grid at the chosen bus via the PCC. 

To show the impact of integration renewable energy sources on static and dynamic power system 

stability during faults, two scenarios have been simulated and presented as shown in Fig.4. 

 Event 1: change of operating mode from On-Grid to OFF-Grid or isolated mode. The circuit 

breaker was opened at t=12 sec, changing system operating mode, the MG switches from 

connected operation mode to stand alone operation mode. 

 Event 2: at t=35 sec a load variation was simulated via the connection of an extern variable load.  
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Fig 3. Grid-Connected Microgrid. 

 

Fig 4. Hybrid system frequency and power. 

4.2 Radial Distribution Network Integrated DG Units: Static Analysis 

In this section, a radial distribution network is analyzed in presence of a hybrid multi-sources microgrid. 

The IEEE 16 bus network shown in Fig. 5 (Civanlar et al., 1988) is simulated for load flow analysis 

including MG at bus 15 to show the impact of integrating renewable energies on the voltage profile. 
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Fig 5. One-Line Diagram of the IEEE 16 bus Distribution Network. 

In this scenario, bus 15 was selected to be the integration node of the connected MG. During the 

simulation, different power rates of penetration have been applied in the first case, and then the type of 

distributed generation sources have also changed from wind, PV and wind-PV-Storage. In order to find 

the optimal capacity and sizing of the distributed generation units to be integrated into the radial network 

a comparative study was performed as presented in Table 1 and Fig. 6. 

Table 1. DG units variation type and penetration ratio. 

 MG P(KW) Q(KVAR) 

1st Case PV 1117 556 

2nd Case Wind turbine 1117 556 

3rd Case PV-WT- Storage 1117 556 

 

Fig 6. Voltage profile at bus 15. 

In this scenario the integration placement was fixed and bus 15 was used as integration bus. Three 

different rates of DG unit capacity including wind and PV generator have been simulated as given in 
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Table 1, where the voltage profile of each bus in the IEEE 16 bus was analyzed to show the contribution 

of renewable energies to enhance power system static performances. As presented in Figure 6. it can be 

observed that the integration of DG can enhance the voltage profile, while the insertion of a hybrid wind-

PV system including storage system can improve the voltage values the most effectively. 

4.3 Radial Distribution Network Connected Microgrid: Dynamic Analysis 

In this scenario, we propose the transition from a static analysis to a dynamic analysis in the presence 

of distributed production units via the connection of the IEEE 16 bus with the hybrid multi-source micro-

grid already studied previously in case 4.1. The micro-grid was connected at bus 15, where, two 

scenarios have been considered: 

 Scenario 1: The Microgrid was connected to the radial system without fault as shown in Fig. 7. 

 Scenario 2: The Microgrid was connected to the radial system in presence of short circuit fault 

as shown in Fig. 8. 

 

Fig 7. Voltage profile at bus 15 after MG connection. 

 

Fig 8. Voltage profile at bus 15 after MG connection and short-circuit fault. 

According to the obtained simulation results, the integration of DG units into the radial distribution 

network contributes to the change of voltage profile, moreover major faults such as three phases short-

circuit fault can affect the dynamic performances and influence the transient stability of the distribution 

system. In this context, in the next simulation, the study was extended to apply optimization algorithm 

to find the best allocation and sizing of MG including DGs in the aim to enhance voltage stability. 
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4.4 Optimal Sizing and Allocation Using PSO 

In this part, an optimal solution using the PSO algorithm was employed to find the best bus placement 

for integrating the microgrid with optimal DG units capacity. As shown in Fig. 9, the single-line diagram 

of the IEEE 33 bus radial distribution network was used as test system (Kaushal & Tomar 2017). During 

the simulation the estimated base power is fixed at 10 MVA and the base voltage at 12.66 kV. The PSO 

optimization algorithm was employed and tested using IEEE 33 bus network based multi-objective 

fitness function. during the optimization process the PSO algorithm was used to find the best allocation 

and capacity of the MG according including DG units. The obtained results are shown in Table 2, where, 

Fig. 10 depicts the curve of the voltage profile at each bus in the radial distribution network. Finally, 

Fig. 11 shows the convergence characteristic of the PSO algorithm. 

 

Fig 9. Single-line diagram of IEEE 33 bus radial distribution test system. 

Table 2. Optimal Placement and Sizing Results. 

Optimal Placement (bus) Optimal Capacity (pu) Qloss (pu) Ploss (pu) 

13 2.1295 0.1703 0.2541 

 

Fig 10. Voltage profile of the IEEE 33 bus Distribution Network. 
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Fig 11. PSO Convergence Characteristic. 

It is clear from the obtained results that there is an observable reduction in power losses with the optimal 

placement of the microgrid at bus 13. The reduction in power losses was observed using PSO algorithm. 

Also, the optimal capacity of the Dg unit integrated in the MG at bus 13 has shown a significant 

improvement in the voltage profile at neighbouring buses. 

5. CONCLUSION 

In this paper, a distributed generation models reported in the literature have been used for the connection 

of microgrids system integrated renewable sources into radial distribution power system. Furthermore, 

a review of the optimal placement of DGs was presented on the IEEE 16 bus distribution network. It 

was concluded that a proper allocation of MGs in the distribution system can reduce the power losses 

and enhance the voltage profile of the system. To find the best bus placement and the optimal capacity 

of the connected MGs, various objectives, namely a single objective and imposed constraints, are 

identified by the researchers. It is also identified that the most common objective is the minimization of 

total power loss and enhancement of the system voltage. Therefore, in this paper the optimization PSO 

based approach was employed for the placement of MGs to reduce the losses and improve the voltage 

profile. Proper sizing and optimal placement of microgrids in the network will significantly reduce the 

power losses in the system. The employed strategy shows high performances and capacity in reducing 

the losses and enhancing the voltage stability. As future works, this study will be extended to the 

Algerian isolated network named In Salah-Adrar-Timimoun (PIAT) in Presence of Renewable Energy 

Sources. 
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