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 In this study, it was synthesized of ultrafine-structured diopside granules using 

the sintering method from solid raw materials (Dolomite) at a temperature of 

1300 °C for 2 hours. Following the preparation, the powders were homogenized 

within the [200-400 μm] range and then immersed in simulated body fluid 

(SBF) at 37°C for 2, 7, 14, and 21 days. Following different soaking durations, 

the samples were carefully extracted from the fluids using deionized water. 

Subsequently, they were air-dried at room temperature prior to examining the 

impact of immersion on their crystalline properties. This involved monitoring 

the variation in ion concentration and pH during the immersion periods, as well 

as using X-ray diffraction (XRD), characterization through scanning electron 

microscopy (SEM), Fourier transform infrared (FTIR), and Inductively Coupled 

Plasma-Optical Emission Spectroscopy (ICP-OES) analysis. The findings revealed 

the partial dissolution of ultrafine Structured diopside granules and the 

development of a layer of carbonate-hydroxyapatite (Ca10.00P6.00O26.14H2.60C0.02) 

on the surface of the samples after seven days of immersion, with a granular 

size estimated at Dnm=102.96 nm. This volume continued to increase with 

longer dipping durations, reaching Dnm=205.94 nm for samples immersed for 

21 days. Finally, the results obtained suggest that ultrafine-structured diopside 

granules are promising candidates for bone regeneration. 
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1. INTRODUCTION 

Significant advancements have been achieved in bone tissue engineering over the last two decades. The 

emergence of implantable ceramic scaffolds, which facilitate the growth of bone tissue, offers new 

possibilities for treating previously untreatable large bone defects resulting from tumors, trauma, and 
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congenital issues (Venkatraman et al., 2020). Polycrystalline silicate ceramics, particularly diopside, 

have garnered attention for their bioactivity and ability to form chemical interactions with the 

surrounding bone, leading to the formation of a biological apatite layer (Shen et al., 2020; Zhu et al., 

2020). Research has showcased the exceptional bioactivity of calcium-silicate ceramics like wollastonite 

(Liu et al., 2004) and diopside (Collin et al., 2021). These materials exhibit diverse functionality and 

favorable mechanical properties, making them well-suited for bone tissue engineering (Palakurthy et al., 

2021; Nonami et al.,1990; Kazemi et al., 2017). Notably, diopside stands out for its impressive fracture 

toughness, mechanical strength surpassing the mechanical properties of bone, slow degradation, 

enhanced hydroxyapatite (HA) deposition, and in vivo biocompatibility (Wu & Chang, 2007; Nonami 

et al.,1992; Vallet-Regi et al., 1999). Recently, bioactive diopside ultrafine Structures (CaMgSi2O6) have 

emerged as promising materials for bone replacement and as nanocarriers for drug delivery. The 

structural properties of this ceramic play a crucial role in its ability to bond with bone tissue. 

Understanding the correlation between structure and biological function is essential for achieving 

optimal clinical results (Sobhani et al., 2023).  

Solid-state reactions have conventionally been employed in the synthesis of diopside powder 

(Titorenkova et al., 2022). However, generating ultrafine-structured diopside granules using this method 

presents challenges due to the high temperatures and prolonged reaction time, leading to grain growth. 

Nevertheless, this approach remains valuable for large-scale production. Ultrafine -powders are 

increasingly drawing attention for their applications in medicine, electronics, and other fields. Low-

temperature synthesis of diopside has been pursued through chemical methods such as hydrothermal 

(Python et al., 2007), sol-gel (Yamamoto et al., 2019), and precipitation (Iwata et al., 2004), as well as 

the utilization of natural waste materials like rice husk ash and eggshells (Palakurthy et al., 2021). 

Venkatraman et al. (Venkatraman et al., 2022). successfully produced monticellite and diopside from 

bio-waste using a self-propagating auto-combustion technique and observed the influence of formation 

temperature on grain size. Another study incorporated various diopside concentrations into forsterite to 

create porous scaffolds, reducing the sintering temperature and enhancing bioactivity and 

biodegradability with 10 wt% diopside (Sadeghzade et al., 2017). Nevertheless, due to the complex 

nature of the sample preparation, an alternative method has been proposed, focusing on substituting 

expensive materials with more readily available and cost-effective raw materials found abundantly 

worldwide. Several studies have explored the use of these indigenous raw materials in bioceramic 

applications (Mezahi et al., 2009; Mezahi et al.,2012; Harabi & Chehlatt., 2013; Harabi & Zouai, 2014). 

Efforts have been dedicated to mitigating excessive grain growth (Harabi et al., 2011). Careful 

consideration of key factors in diopside production, including milling techniques, compacting pressure, 

sintering temperature, and holding time, can lead to the production of promising diopside-based 

bioceramics. A straightforward and energetically efficient approach entails using a vibratory 

multidirectional milling system, incorporating the bimodal distribution of highly resistant ceramics, to 

obtain sub-micron-sized powders. Consequently, the primary aim of this study is to comprehensively 

assess the bioactivity of pure ultrafine-scale diopside prepared using a solid-state synthesis method from 

locally sourced raw materials. This will be achieved through a thorough investigation into the formation 

of hydroxyapatite (HA) on the material's surface when exposed to a simulated body fluid (SBF) solution. 

2. EXPERIMENTAL 

2.1 Preparation of powders 

ultrafine-structured diopside granules were synthesized using a solid-state reaction method. A blend of 

highly pure SiO2 and doloma (CaO.MgO), sourced from local dolomite raw material (CaCO3.MgCO3), 

was heated at 900°C for 2 hours. The mixture was then treated with distilled water at 150°C for 12 hours, 
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and subsequently subjected to a second heating at 600°C for 2 hours. The doloma utilized boasts 

approximately 99.6 wt.% purity, with minimal impurities such as 0.27 wt.% Fe2O3, 0.07 wt.% Al2O3, 

and 0.02 wt.% Na2O, as per Ming et al. (Ming et al., 2011). This raw material is categorized as high-

purity calcium and magnesium oxides (CaO.MgO ≥ 99.0%). The doloma was combined with 55.5 wt.% 

SiO2 and the resulting mixtures were ball-milled in aqueous media for 4 hours using a specialized milling 

system (Harabi et al., 2015; Harabi & Harabi, 2015). A comprehensive study detailing the key features 

and benefits of this modified milling system was previously published and applied to the sintering of 

natural hydroxyapatite (Harabi et al., 2015; Harabi & Harabi, 2015). Subsequently, the powders 

underwent a calcination process at 700°C for 2 hours, followed by sintering at 1300°C for 2 hours.  

2.2 In vitro tests (apatite forming ability) 

The sintered powders' in vitro behavior was examined through their ability to generate apatite in a 

simulated body fluid (SBF). Following sintering at 1300 °C for 2 hours, the powders were submerged 

in an SBF solution mirroring the ion concentrations of human blood plasma as per Table 1 (Cho et al., 

1995). The pH of the SBF solution was stabilized at 7.4 using (hydroxymethyl)-aminomethane 

[(CH2OH)3CNH2] and hydrochloric acid (HCl) according to Kokubo’s protocol (Cho et al., 1995). The 

"In vitro" test involved immersing 10 mg powders in 10 mL of SBF at 37°C for 2, 7, 14, and 21 days 

respectively, without replacing the SBF during the experiment. The pH level of the SBF was monitored 

at regular intervals. After each soaking period, the powders were removed from the solution, washed 

with deionized water, and air-dried at room temperature for characterization. 

2.3 Characterisations 

The thermal stability and phase transformations were examined using a differential thermal analyzer 

(DTA) in NETZSCH, Germany. The analysis was conducted over a temperature range of 30 to 1000°C 

in an air atmosphere, with a heating rate of 10°C per minute. The powder's phase identification and 

morphology, both before and after soaking in the SBF solutions (Table 1), were analyzed using various 

techniques. X-ray diffraction was conducted using a BRUKER D8 ADVANCE instrument in Karlsruhe, 

Germany, operating with CuKα radiation (λ = 0.154 nm) and a Ni filter, at a working voltage of 40 kV 

and a working current of 30 mA. The crystallite size in the synthesized powders was estimated using 

the Scherrer equation as follows:  

𝐷𝑛 =
0.9 λ

β cosθ
       (1) 

Where β is the full-width at half maximum intensity (FWHM), λ is the wavelength, ϴ is Bragg’s angle, 

and Dn is the apparent crystallite size (nm). Fourier-transform infrared spectroscopy was performed with 

a Bruker Equinox 55 instrument in the range of 4000-400 cm-1. The surfaces of the powders were 

examined through Scanning Electron Microscopy using a HITACHI JSM-6301 F in Tokyo, Japan, at 

an accelerating voltage of 7 kV. Furthermore, the concentrations of Ca, P, and Mg ions in the SBF 

solution after soaking were quantified using Inductively Coupled Plasma-Optical Emission 

Spectroscopy with a Spectro Ciros Vision instrument in Karlsruhe, Germany. 

Table 1. Ion concentration of the SBF in comparison to human blood plasma. 

Types 
Ion concentrations [mmol/L] 

Na+ K+ Mg2+ Ca2+ Cl- HCO3- HPO4
2- SO4

2- 

SBF 142.5 5.0 1.5 2.5 147.8 4.2 1.0 0.5 

Blood plasma 142.5 5.0 1.5 2.5 103.0 27.0 1.0 0.5 
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3. RESULTS AND DISCUSSIONS 

3.1 Characterisation of the CaMgSi2O6 powders 

In this study, we used dolomite stone sourced from Algerian sites of Batna Province, characterized by a 

light brown tint and labeled as D1. It has a good density (ρ = 2.69 g/cm³), representing 93.76% of the 

theoretical density of dolomite. The results of X-ray diffraction, shown in Fig. (1a), revealed through 

comparison with the ICDD File element identification cards that all diffraction lines belong to the 

dolomite powder D1. No impurities or other phases were detected in the extracted spectrum, 

demonstrating the relatively high purity of the local dolomite. The Differential Thermal Analysis (DTA) 

curve depicted in Fig. (1b) indicates that the temperature for diopside nucleation falls within the range 

of 740 to 750°C.  
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Fig 1. (a) XRD pattern of dolomite raw material and (b) DTA curve of the prepared diopside powders. 

The XRD powder data underwent quantitative X'Pert High Score refinement analysis using a new 

software module introduced by Philips Analytical. This module, known as X'Pert High Score, is 

specifically tailored to simplify and enhance the reliability of phase identification for complex phase 

mixtures. It integrates various robust analytical tools into a user-friendly program compatible with 

Windows, aiming to streamline the analysis process. 

The XRD patterns in Fig. (2) depict the diopside powders sintered at 1300 °C for 2 hours before 

immersion in the SBF solution. The XRD spectrum displayed prominent diffraction peaks at the 2ϴ 

angle regions with intensities of 26.510, 27.452, 29.713, 30.185, 30.771, 34.763, 35.536, 39.007, 42.141, 

42.715, 44.092, 45.054, 49.494, 49.7381, 51.787, 56.417, and 65.352. These correspond to the crystal 

planes represented by the Miller indices (021), (220), (-220), (310), (-311), (-131), (-112), (311), (-331), 

(-421), (041), (202), (510), (-512), (-531), and (531). The observed peaks matched the ICDD File No. 

01-072-1497. The diopside crystallite structure was determined to be monoclinic, with lattice constant 

parameters a = 9.776, b = 8.979, c = 5.267 Å, and β = 105.94°. Analysis of the XRD spectrum reveals a 

typical pattern for diopside powders produced through a simple and efficient vibratory multidirectional 

milling system. The combined effects of vibration and rotation improve dispersion by inducing intense 

collisions, which subsequently reduce particle size. The XRD analysis confirms that the initial calcined 

powder is indeed diopside, with a chemical composition of CaMgSi2O6. Moreover, the spectrum 

indicates that all peaks are exclusive to the diopside structure, with no additional impurity peaks 

detected. The crystallite size was calculated using the Debye-Scherer equation (see Eq. (1)) based on 

the full width at half maximum value in the XRD pattern, resulting in a size of approximately 660 nm, 

determined from the intense diffraction peak at 2θ = 29.713. This value is slightly higher than those of 

diopside prepared using other usual techniques (440 nm) (Palakurthy et al., 2021). Based on the 

information provided, ultrafine-structured diopside granules can be readily synthesized using the 
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sintering method from solid raw materials at relatively high temperatures, without the need for acidic 

catalysts. 
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Fig 2. XRD pattern of the CaMgSi2O6 powders sintered at 1300 °C before soaking in the SBF solution. 

FTIR spectroscopy was used to determine the presence of functional groups associated with diopside. 

Analysis of the FTIR spectra revealed the presence of all characteristic functional groups, signifying the 

successful phase formation of diopside (Fig. (3a)). Upon calcination of the diopside precursor at 1300 

°C, various vibrational modes were observed. These included the non-bridging bending modes of O–

Mg–O bonds within the range of 457 cm−1 to 516 cm−1. Additionally, the O–Si–O bending mode 

manifested as sharp dual peaks at 633 cm−1 and 670 cm−1, while the Si–O symmetric stretching appeared 

as peaks ranging from 854 cm−1 to 967 cm−1. Notably, an intense peak at 1069 cm−1 corresponded to the 

symmetric stretching of the Si–O–Si functional group. These findings indicated that diopside derived 

from the local raw materials (CaCO3.MgCO3) using a solid-state reaction a similar pattern of functional 

groups as previously reported (Omori et al., 1971). 
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Fig 3. FTIR spectra of diopside powders (a) before, (b) after 2 days, and (c) after 21 days of 

immersion in SBF. 
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3.2 Apatite-formation ability of the CaMgSi2O6 powders 

When assessing bioactivity, it is essential to consider variables such as porosity and crystallinity, as 

higher levels of these factors typically indicate greater bioactivity. Consequently, the bioactivity of the 

diopside powders was examined at a temperature of 1300 °C, which is known to produce highly 

crystalline powders. Validating the bioactivity of these ultrafine-structured diopside granules has the 

potential to unlock a wide range of applications for it.  

The X-ray diffraction (XRD) patterns, depicted in Fig. (4), were analyzed to investigate the surface 

crystallinity of ultrafine-structured diopside granules when immersed in simulated body fluid (SBF) for 

different durations of 2, 7, 14, and 21 days to evaluate the hydroxyapatite deposition. After a 2-day 

immersion, no significant new crystalline phase was observed in the XRD analysis of diopside ceramics 

in SBF. However, the intensity of the diopside's crystalline peaks decreased over time, indicating its 

initial dissolution, subsequently enabling the precipitation of hydroxyapatite. Following 7 days of 

immersion, some small peaks at 2θ = 31.69 (211) and 25.87 (002) corresponding to a secondary phase 

emerged, consistent with the characteristics of Carbonated hydroxyapatite (CHA) 

(Ca10.00P6.00O26.14H2.60C0.02) as reported in JCPDS file No. 96-900-3554. After 14 days of immersion, an 

additional peak of Carbonated hydroxyapatite at 2θ = 49.43 (123) appeared as minor phases. Following 

21 days of immersion, there was a rise in the intensity of XRD peaks associated with Carbonated 

hydroxyapatite, and the distinctive peaks of CHA at 2θ = 50.35 (213) emerged after this period. 

However, the diopside phase continued to be predominant. 

In Table 2, the interplanar d-spacings and positions (2θ) of the diffraction peaks corresponding to the 

X-ray patterns of the powders after 21 days of storage in SBF are presented. The calculated d-spacings 

closely matched the data from ICDD card 01-071-1494 for diopside and file No. 96-900-3554 for CHA. 

These results suggest that ultrafine-scale diopside, sourced from local raw materials, holds promise for 

converting into hydroxyapatite during the initial stages of soaking, aligning with previous literature 

reports (Wu & Chang, 2007; Choudhary et al., 2016; Iwata et al., 2004). The Debye-Scherer equation 

was used to calculate the crystallite size from full width at half maximum value in the XRD pattern, by 

selecting the intense diffraction peak at 2θ = 31.69. The research findings indicate that after seven days 

of immersion, the diopside granules partially dissolved, leading to the formation of a layer of carbonate- 

hydroxyapatite (Ca10.00P6.00O26.14H2.60C0.02) on the sample surfaces, with an estimated granular size of 

Dnm=102.96 nm. Over longer immersion periods, this layer continued to grow, reaching Dnm=205.94 nm 

for samples immersed for 21 days. Therefore, this ultrafine-sized structure could offer valuable 

advantages for applications in bone tissue engineering, dentistry, and orthopedics, making the diopside 

more biocompatible (Kazemi et al., 2017). 

Table 2. The position and characteristics of the main XRD peaks of the ultrafine-structured diopside 

granules after immersion in SBF for 21 days. 

Pos. [°2Th.] Height [cts] 
FWHM Left 

[°2Th.] 

d-spacing 

[Å] 

Rel. Int. 

[%] 

Tip 

Width 

Matched by 

29,8211 360,45 0,0669 2,99614 100,00 0,0803 01-071-1494 

30,8591 231,37 0,1673 2,89768 64,19 0,2007 01-071-1494 

31.9612 165,05 0,1338 2,82347 45,79 0,1606 96-900-3554 

56,4223 114,49 0,2676 1,63085 31,76 0,3212 01-071-1494 

25,8763 96,82 0,1004 3,42243 26,86 0,1204 96-900-3554 
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Fig 4. XRD patterns of diopside powders after immersion in SBF for 2, 7, 14, and 21 days. 

Following immersion in simulated body fluid (SBF), the diopside powder surface underwent FTIR 

spectroscopy analysis to study the absorption bands of various functional groups and confirm the 

formation of carbonated hydroxyapatite. After 2 days in the SBF solution, the intensity of the silicate 

absorption bands decreased, indicating early-stage hydrolysis of metal ions. Furthermore, the FTIR 

spectra (curve b in Fig. (3)) of diopside after 2 days in SBF revealed a sharp peak of phosphate at 499 

cm−1 (Choudhary et al., 2016). The presence of phosphate peak was evidence of the growth of 

hydroxyapatite on the surface of diopside after 2 days only in SBF supporting the understanding of the 

chemical changes occurring during the experiment. Fig. (3c) depicts the FTIR spectra of hydroxyapatite 

formation on the diopside surface 21 days after immersion in SBF. The analysis showed that peak 

intensities at ~633 and ~670 cm-1 related to the silicates' bending mode reduced, while peaks at ~470 

and ~516 cm-1 corresponding to O-Mg-O were replaced with phosphate bending vibration modes at 

~485 and 547 cm-1 (Palakurthy et al., 2021). This indicates the hydrolysis of the calcium and magnesium 

metal ions during the initial stages of SBF immersion. The observed phosphate peaks confirmed the 

mineralization of hydroxyapatite on the sample's surface. The bending vibration of the phosphate group 

was observed at 550 cm-1 (Kontonasaki et al., 2002), while the stretching vibration was noted at 972 

(Choudhary et al., 2016) and 1077 cm-1(Arai & Sparks, 2001). Additionally, the characteristic peak at 

872 cm-1 corresponded to the stretching vibration of the HPO4
2- group (Batool et al., 2023), providing 

evidence of hydroxyapatite growth on the diopside surface after SBF soaking. Moreover, the presence 

of a peak at ~1418 cm-1 indicated the presence of the carbonate functional group, suggesting the 

formation of a carbonated hydroxyapatite (CHA) layer on the sample surface (Barralet et al., 1998). 

Lastly, the band at ~1635 cm-1 demonstrated the bending vibrational mode of absorbed H2O (Choudhary 

et al., 2019). 

Figure (5a) illustrates the variations in calcium (Ca), phosphorus (P), and magnesium (Mg) 

concentrations in the simulated body fluid (SBF) solutions. Utilizing Inductively Coupled Plasma (ICP), 

the measurements revealed notable changes in the ion concentrations of the SBF solutions across 

different soaking durations. Specifically, the concentration of Ca and Mg in the SBF increased as the 

soaking time extended up to 2 days, followed by a decrease in Ca concentration. Conversely, the P 

concentration in the SBF solutions decreased consistently throughout the soaking periods. The rise in 

calcium and magnesium concentrations was attributed to the dissolution of these ions from the 

CaMgSi2O6 powders. In contrast, the decrease in calcium ions after 2 days of soaking was explained by 

the rapid consumption of Ca ions during the subsequent formation of Carbonated Hydroxyapatite 

Ca10.00P6.00O26.14H2.60C0.02 on the powder surface. The reduction in phosphorus concentration was linked 
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to the formation of amorphous calcium phosphate and crystalline apatite on the powder surface, which 

absorbed P ions from the SBF solutions. The ICP measurements indicate that the increase in Ca 

concentration and the decrease in P concentration were caused by the formation of apatite on the surface 

of the CaMgSi2O6 powders during soaking in the SBF solution. Additionally, it was observed that the 

concentration of calcium ions during the reaction ranged from 84 to 100 ppm, falling within the reported 

suitable range of [80-200 ppm] for bone cell proliferation and differentiation, significantly lower than 

the critical value of cellular toxicity observed at 400 ppm (Yoshizawa et al., 2014; Nabiyouni et al., 

2018). Furthermore, the concentration of magnesium ions during this reaction was found to be within 

the range of 36 to 41 ppm, significantly lower than the toxic concentration estimated at 486 ppm for the 

cells (Maeno et al., 2005). 

The pH variation in the simulated body fluid (SBF) resulting from the immersion of diopside pellets is 

linked to the creation and breakdown of apatite. Initially, the pH of the fresh SBF was 7.4, but it rose to 

around 8 after 2 days of immersion. Subsequently, there was a noticeable decrease in pH over the 

remaining 19-day monitoring period (Fig. (5b)). Two factors contribute to the pH changes in SBF: 

firstly, ions leach from bioceramics into the physiological fluid, as diopside releases Ca2+ and Mg2+ ions 

from its surface into the SBF, leading to an increase in SBF pH. It is concluded that the dissolution of 

Ca2+ and Mg2+ ions from the sintered body during early immersion produces a silica-rich layer that 

promotes apatite nucleation. Additionally, as diopside grains dissolve, a porous surface layer forms, 

eventually being coated with nano globules of crystal aggregates of Carbonated Hydroxyapatite 

Ca10.00P6.00O26.14H2.60C0.02. The subsequent pH decrease is attributed to the dominance of CHA formation, 

as confirmed by XRD and FTIR analyses, consuming OH− in the SBF. Nevertheless, the results indicate 

a pH range of 7.4–8 when diopside specimens are immersed in SBF, closely aligning with existing 

literature on pH and indicating a favorable environment for in vivo bone cell culture (Shahrouzifara et 

al., 2019). 
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Fig 5. The Changes in: (a) Ca, Mg, and P concentrations and (b) pH of the SBF solutions after soaking 

the diopside powders for various periods. 

Figure (6) presents the surface morphology of ultrafine-structured diopside granules before and after 

immersion in the SBF solution for 2 and 21 days. A comparison with the particles prior to immersion 

(Fig. (6a)) reveals the emergence of small ball-like particles on the diopside powders' surface after 2 

days of soaking (Fig. (6b)). This surface is interspersed with numerous pores, accounting for up to 7.41% 

of the area. The analysis depicted in MEB Fig. (6b) indicates a maximum pore size of approximately 5 

μm. Such a porous structure is advantageous as it enhances bioactivity and facilitates the release of ionic 

products (Jones & Hench, 2003). Additionally, microspores smaller than 10 μm are essential for 

promoting capillary ingrowth and cell-matrix interactions (Esfahani et al., 2008). After 21 days of 
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soaking, the micropores were no longer present as carbonated hydroxyapatite crystals were deposited, 

as shown in Fig. (6c). Initially, there is an exchange process between Ca2+ and Mg2+ ions on the diopside 

surface with hydrogen ions (H+ or H3O+) in SBF, resulting in a decrease in calcium and magnesium 

content on the surface and a change in surface charge. This surface charge plays a significant role in the 

formation of the CHA layer on the submerged surface. Subsequently, a silica-rich layer forms on the 

surface due to the re-polymerization of silanol groups. These silica-rich layers attract Ca2+ and PO4
3− 

ions, leading to the formation of CaO–P2O5 films. Over time, the accumulation of these ions leads to the 

formation of a calcium phosphate layer on the soaked surface (Saravanan & Sasikumar, 2012; Karamian 

et al., 2016).  

 
 

Fig 6. SEM images of the obtained diopside powders sintered at 1300 °C for 2 hours: (a) before, (b) 

after 2 days, and (c) after 21 days of immersion in SBF. 

4. CONCLUSIONS 

Numerous studies have tackled the preparation of diopside and other bioglasses, but only a few have 

delved into sintering ultrafine-structured diopside granules using the Solid-state reactions method and 

examining their bioactivity. In this study, a simple and eco-friendly one-pot Solid-state reactions method 

was employed to successfully produce ultrafine-structured diopside granules. This method offers several 

advantages, such as using cost-effective raw materials, gentle reaction conditions, a short reaction time, 

and a straightforward work-up process with minimal environmental impact. 

The crystallization of the dried powder and the bioactivity of the sintered ultrafine-structured diopside 

granules were assessed by immersing it in simulated body fluid (SBF) and studying the effect of thermal 

treatment. The results showed that the pure ultrafine-structured diopside granules, obtained from local 

raw materials (Dolomite: CaCO3.MgCO3), exhibited increased reactivity in the SBF solution, 

demonstrating strong hydration upon immersion, which promoted the formation of hydroxyapatite on 

the powder surface. Furthermore, CHA formation was observed after 2 days only of immersion in the 

SBF solution. With longer soaking periods (7, 14, and 21 days), a dense and continuous layer of 

carbonate hydroxyapatite (Ca10.00P6.00O26.14H2.60C0.02) formed on the powder surfaces, with an estimated 

granular size of Dnm=205.94 nm. As a result, CaMgSi2O6 ultrafine particles display promising 

bioactivity and have the potential to rapidly induce hydroxyapatite formation after immersion in SBF, 

making them feasible candidates for bone repair biomaterials. 
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NOMENCLATURE 

Dn Mean grain size [nm] 

β Stands for full width at half maximum of the peak 

λ Diffraction wavelength (0.154059) [nm] 

θ Diffraction angle 
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