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Abstract  - This  paper  presents  a  simple  control structure  based  on  the  sliding  mode 
algorithm for an isolated-loaded induction generator (IG). The machine delivers an active 
power to a dc-load via a converter connected to a single capacitor on the dc side. Since
the  converter/capacitor  model  is  nonlinear, the  sliding  mode  technique  constitutes  a 
powerful  tool  to  ensure  the  dc-bus  voltage regulation.  The  computer  simulations  are 
provided to verify the validity of the proposed control algorithm.
Résumé - Ce papier présente une commande de structure simple basée sur l’algorithme
du  mode  de  glissement  pour une  génératrice  asynchrone  auto  excitée.  La  génératrice 
délivre  une  puissance  active  à  une  charge  continue  par  la  voie  d’un  convertisseur 
connecté  à  un  condensateur  du  côté  continu. Puisque  le  modèle  convertisseur  /
condensateur  est  non  linéaire,  la  technique  du  mode  de  glissement  constitue  un  outil 
puissant  pour  assurer  la  régulation  de  la  tension  du  bus  continu.  Les  simulations  par 
ordinateur sont fournies pour vérifier la validité de l’algorithme du contrôle proposé.
Key words: Induction generator - Sliding mode control - DC voltage control.

1. INTRODUCTION
  The use of induction generators is becoming more and more popular for renewable 

energy sources, especially for wind electric systems, both in grid connected and stand 
alone  mode.  It  is  well  known  that  the  induction  generator  can  operate  in  self-excited 
mode  using  only  the  input  mechanical  power  from  the  rotating  prime  mover  and  a 
source of reactive power. The reactive power can be supplied by a variety of methods,
from simple capacitors to complex power conversion systems.

  Owing  to  its  many  advantages,  the  self  excited  induction  generator  has  emerged 
from  among  the  well  known  generators  as  a  suitable  candidate  to  be  driven  by  wind 
turbine. Some of its advantages are small size and weight, robust construction, absence 
of separate source for excitation and reduced maintenance cost.

  When  the  induction  generator  is  connected  to  an  infinite  power  net,  the  analysis 
becomes simple, since the voltage and frequency are determined by the driving network.
However, an autonomous induction machine is able to generate electric power only if 
self  excitation  occurs  [1-3],  and  it  can  be sustained.  The  main  drawback  of  such 
generators however is its inherently poor voltage regulation, and it becomes necessary 
to have an appropriate voltage regulating scheme.

  To overcome poor voltage regulation of the SEIG, a number of schemes have been 
proposed.  The  scheme  based  on  switched  capacitors,  this  scheme  finds  limited 
application because it regulates the terminal voltage in discrete steps [4, 5].
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A saturable reactor scheme of voltage regulation involves potentially large size and 
weight due to the necessity of a large saturating inductor [6, 7]. 

In the short shunt and long shunt configuration, the series capacitor used causes the 
problem of resonance while supplying power to an inductive load [8, 9]. 

The problems associated with schemes discussed above can be solved by applying 
nonlinear control to an inverter/rectifier system with a single DC capacitor on the DC 
link. 

In this paper, a review of sliding mode control associated to the flux oriented control 
technique is applied to a self-excited induction generator. The vector control strategy is 
employed in order to reduce SEIG mathematical model complexity. The induction 
generator rotor flux is controlled by the d-axis stator current and the q-axis stator current 
controls the delivering active stator power. 

2. INDUCTION GENERATOR MODEL 
The state space model of induction generator in the synchronously rotating reference 

frame d  and q  axes are [10, 11]: 
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And the model of the PWM converter is: 
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Where,  
s  and r  denote stator and rotor quantities and subscripts d  and q  are used to 

indicate direct and quadrature axis, respectively.  
V , i  and ϕ  represent instantaneous voltages, currents and fluxes respectively, 

dcV  is the DC voltage.  
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sR , rR  and R  are the stator, rotor and load resistances respectively, C  is the 
capacitor in the DC side. 

sL , rL  and M  are stator, rotor and magnetizing inductances respectively.   

dS  and qS  are the Park's transformation of the switching functions aS , bS  and cS  
for the PWM technique and their state is defined by the following function: 
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When the induction generator is operated under the vector control conditions, the 
rotor flux estimator can be expressed as ( rrd ϕ=ϕ  and 0rq =ϕ ): 
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and the synchronous frame velocity is given by: 

r
sd

r
s

iM
ϕτ

+ω=ω                 (5) 

The variables to be controlled are the rotor flux rϕ  and the DC voltage dcV  in the 
DC side. 

3. CASCADE SLIDING MODE CONTROL 
3.1 General concept 

The variable structure system and their associated sliding regimes are characterized 
by a discontinuous nature of the control action with which a desired dynamic of the 
system is obtained by choosing appropriate sliding surfaces. 

The control actions provide the switching between subsystems which give a desired 
behavior of the closed loop system [10], [12-16]. 

The general form of sliding surface which guarantees the convergence of the state x  
to its reference *x  is given as follows: 
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where r  is the degree of the sliding surface and λ  is a strictly positive constant. 
It is the first convergence condition which permits dynamic system to converge to 

wards the sliding surfaces.  
It is a question of formulating a positive scalar function ( ) 0xV >  for the system 

states variables which are defined by the following Lyapunov function: 

( ) ( )xS
2
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To cause the Lyapunov function decreases, it is necessary to ensure that its 
derivative is negative. This is checked if: 

( ) ( ) 0xS.xS <&                 (8) 
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Now, to define the control algorithm for the induction generator, it contains two 
terms, first for the exact linearization, the second discontinuous one for the system 
stability. 

neqc UUU +=                 (9) 

- eqU  is calculated starting from the expression ( ) 0xS =& . 

- nU  is given to guarantee the attractivity of the variable to be controlled towards 
the commutation surface. 

To find the control expression cU , let us consider a class of nonlinear system 
described by the following equation: 

( ) cUgxfx +=&              (10) 

where: x : state vector, cU : Controls inputs and f , g  are  smooth vector fields, 
Therefore: 
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We substitute Eqs. (9) and (10) into (11), we get: 
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when the sliding mode is reached the surface is cancelled and consequently its 
derivative also 0S =&  

Therefore the equivalent control eqU  can be written as: 
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By replacing eqU  in Eq. (12), we obtain: 
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and the attractivity condition expressed by Eq. (8) becomes: 
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In order to satisfy this condition, the sign of nU  must be opposed to the one of 
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The simplest equation is the form of relay: 
( )Ssign.kUn =               (16) 
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Fig. 1: Control structure proposed 

3.2 Application to the SEIG control 
In this study, the sliding mode theory is applied to the rotor field oriented induction 

generator model, in such a way as to obtain simple surfaces. The proposed Self-Excited 
Induction Generator, ‘SEIG’ control scheme is shown in Fig. 4.  

It consists of an SEIG, a three phase converter connected to the IG terminals, a DC 
link voltage and finally a DC load in the DC side converter. 

For the IG sliding mode controllers design, four switching surfaces are chosen as: 
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In order that 0S →  in finite time, the control law is designed such that: 
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We have: 
*
rr1S ϕ−ϕ= &&&               (19) 

Eqs. (4) and (19) yield: 
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The direct stator current set value is deduced as: 
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With the same manner, the direct stator current surface derivative is: 
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Taking into account the Eqs. (1) and (20), we obtain: 
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The best way to calculate the dcV  area is to put it into the following form: 
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The surface of DC voltage is given by: 
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Eqs. (18) and (26) give: 
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When losses are not taken into account, the electromagnetic torque will be given by: 
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Finally, the surface of  sqi  is given by: 

*
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Taking into account the Eqs. (1), (18) and (32), the quadrature stator voltage 
component reference value is computed as: 
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The reference rotor flux linkage required at any speed is calculated based on this 
maximum flux linkage, which corresponds to the minimum rotor speed.  

Hence at any rotor speed the reference rotor flux linkage is given by equation (34) 
and graphically its variation with rotor speed is shown in Fig. 2, [17]: 

ω
ϕω

=ϕ maxrmin*
r              (34) 

 
Fig. 2: Relationship between rotor speed and rotor flux linkage. 

4. SIMULATION RESULTS 
The proposed control has been simulated for an induction machine with the 

following parameters (1.5 kW, ϕcos  = 0.8, 4 poles, 220 V (rms)), whose per-phase 
equivalent circuit constants are: 

H274.0LL rs == , H258.0M = , Ω= 85.4Rs  and Ω= 805.3Rr   
The DC voltage regulation is obtained using the proposed algorithm controller in 

spite of the presence of disturbances such as step changing of the resistive load and the 
mechanical speed (when the SEIG is driven by a wind turbine for example). 

Figure 3, shows a no-load operation flowed-up by a step changing of the resistive 
load (250 Ω) introduced at s6.0t =  when the DC-bus voltage is set to 600 V. A rapid 
response is obtained and the introduced perturbation is immediately rejected by the 
control system. 

We also showed in the figure 4, the variation in d-axis, q-axis stator currents and 
electromagnetic torque in the rotating reference frame. 

The figure 5 shows the stator current and the build up of generated voltage at the 
terminals of the induction generator. 
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Fig. 3: DC voltage and rotor flux variation with speed and load variation 

  

 
Fig. 4: Dynamics of the SEIG during startup and load variation at 0.6 s 
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Fig. 5: Generated current and voltage at the terminals 

of induction generator with load variation at 0.6 s 

5. CONCLUSION 
A variable speed system conversion using a SEIG with a PWM inverter is proposed.  
Stable and independent control of the SEIG rotor flux estimated and the DC-bus 

voltage by applying the nonlinear sliding mode control is demonstrated.  
In spite of taking in the account all the system parameters effects, the sliding mode 

control provides good dynamic performances of the global SEIG conversion system. 
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