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Abstract - When the stagnation temperature of the combustion chamber or ambient air 
increases, the specific heats and their ratio do not remain constant any more, and start to 
vary  with  this  temperature.  The  gas  remains  perfect,  except,  it  will  be  calorically 
imperfect and thermally perfect. A new generalized form of the Prandtl Meyer function is 
developed, by adding the effect of variation of this temperature, lower than the threshold
of  dissociation.  The  new  relation  is  presented  in  the  form  of  integral  of  a  complex 
analytical  function,  having  an  infinite  derivative  at  the  critical  temperature.  A  robust 
numerical  integration  quadrature  is presented  in  this  context.  The  classical  form  of  the 
Prandtl Meyer function of a perfect gas becomes a particular case of the developed form.
The  comparison  is  made  with  the  perfect  gas model  for  aim  to  present  a  limit  of  its 
application. The application is for air.
Résumé – Lorsque la température de stagnation de la chambre de combustion ou de l’air 
ambiant augmente, la chaleur spécifique et de leur rapport ne reste pas plus constant, et 
commence  à  varier  avec  cette  température.  Le  gaz  reste  parfait,  à  l'exception,  il  sera 
imparfait  en  calories  et  parfait  thermiquement.  Une  nouvelle  forme  générale  de  la 
fonction  de  Prandtl  Meyer  est  développée,  en  ajoutant  l'effet  de  variation  de  cette 
température,  qui  est  basse  au  seuil  de  dissociation.  La  nouvelle  relation  est  présentée 
sous  la  forme  d'une  intégrale  d'une  fonction analytique  complexe,  et  ayant  une  dérivée 
infinie  à  la  température  critique.  Une  intégration  quadratique  numérique  robuste  est 
présentée dans ce contexte. La forme classique de la fonction de Prandtl Meyer d'un gaz 
parfait devient un cas particulier de la forme développée. La comparaison est faite avec
le  modèle  d’un  gaz  parfait  ayant  pour  but  de présenter  une  limite  de  son  application.
L'application est l'air.
Keywords:  Supersonic  flow  -  High  temperature  -  Prandtl  Meyer  function  –  Gauss

  Legendre quadrature - Relative Error.

1. INTRODUCTION
  In the Reference [1], we developed a new form of the Prandtl Meyer (PM) function 

at  high  temperature  (HT)  applied  when  the  stagnation  temperature  (combustion 
chamber, ambient air) of the flow is high, as a generalisation of the PM function of the 
Perfect Gas (PG) model.

  We  know  that  the  design  of  any  supersonic  nozzles  and  the  calculation  of  a 
supersonic flow are based on the application of the method of characteristics which is 
formulated on the PM function. The supersonic flow calculation is made in each chosen 
point of the field, where it is necessary to calculate the value of the PM function. Then 
the  choice  of  an  efficiency  quadrature  which  makes  fast  calculation  with  very  high 
accurary is mandatory.
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The aim of this work is to present a robust quadrature which can make fast 
calculation process answering the specificity of the function and to make comparison 
with the Simpson method [1]. The integration contains always the critical temperature.  

With a much reduced number of points, the function can be calculated with a very 
high precision. The difficulty arises in the application of this quadrature is that the 
points of integration are non-rational number [5]. 

2. MATHEMATICAL FORMULATION 
From reference [1], the value of ν  for a Mach number 0.1M >  ( *TT < ) at high 

temperature is given by the following relation: 

∫ ×=ν ν
*T

T Td)T(F)T(                (1) 
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The terms )T(M , )T(a  and )T(γ  are given in References [1] and [2], where: 

)T(a
)T(H2

)T(M =                (3) 

The expressions of )T(Cp  and )T(H  are presented in Refs. [1] and [2]. The PM 
function is connected directly with the temperature. In this relation, the temperature 
corresponding to the Mach number must be determined by the resolution of the {Eq. 
(3)}. The calculation process of *T  and sT  are presented in reference [2]. 

The calculation of the value of ν  needs to integrate the function )T(Fν , where the 
analytical procedure is impossible, considering the complexity of this function. 
Therefore, our interest is directed towards numerical calculation. The function )T(Fν  
has the following properties 
 It contains only positive terms and the square root some is the interval of integration. 
 It is a regular function and it hasn’t a singularity. In other words, the function to be 

integrated is completely defined in the closed interval for any values of sM  and 0T . 

 It is zero for *TT =  and has an infinite derivative at this temperature. 
Consequently, the successive derivates of higher order present a singularity at point 

*TT = . Then, we can write: 
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The numerical integration quadratures based on the area calculation of the function 
(2) requires a very high discretization to have a suitable convergence, considering the 
result (4).  
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A major disadvantage for those quadratures is that no information on the error can 
be given, considering the error calculation is based on the maximum value of the 
derived from the function )T(Fν  and the derived from higher order [3] in the interval 
of integration. 

The function )T(Fν  has consequently a term known by weight function, that is 
responsible for the singularity of derived and the higher orders derivatives from the 
function in point *TT = . Our interest is thus based on the decomposition of the 
function, so removing the singularity and to consider remains to it function for the 
numerical integral calculation. 

The function under the sign square root in the expression (2) has a root *TT = . We 
can show this result starting from the relation (3), when 1M =  ( *TT = ). Then this 
expression is divisible by ( T*T = ).  

This relation can be written by multiply and divide at the same time by T*T = . 
In the obtained result, we did not prefer the Euclidean division for reason taking the 
general case independently of the interpolation of )T(Cp . 

Let us take the following variable change for aim to transform the interval [ ]*T,Ts  
to [ ]1,0 : 

x)T*T(*TT s ×−−=                (5) 

then xd)T*T(Td s−−= . When 0x = , one has *TT = , and when 1x =  one 
obtains TsT = . Consequently, the value sv  can be obtained by the evaluation of the 
following integral in the interval [ ]1,0 . We obtain: 

∫=
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In this relation, the temperature is given by the relation (5). The obtaining value of 
sv  depends on sM  and 0T . 

We can write from (7): 
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Then, the function )x(f  has a finite value at 0x = . 

In the relation (7), the developed integration quadrature does not need to know the 
value of the function )x(f  when 0x = , ( *TT = ). 
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The function )x(f  and the successive higher order derivatives )x('f , )x(''f ,  …, 

)x(f )n(  do not present any singularity in the closed interval [ ]1,0 , and in 
particularity at 0x = . Then for 0x = , one has: 
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Fig. 1: Graph of the function 

)x(f)x(w  for sM  = 6.00 
Fig. 2: Graph of the function  

)x(f  for sM  = 6.00 

Figures 1 and 2 respectively represent the form of )x(f)x(w  and )x(f . The 
presented functions are selected for sM  = 6.00. For the other values of sM , one 
obtains the same pace with different values. 

On figure 1, one can view clearly that the function )x(f)x(w  has a infinite 
derivative at 0x = . Figure 2 shows us that the function )x(f  is regular in the interval 
[ ]1,0  some is 0T  and sM . 

Considering the form of the function )x(f , one can say that the higher successive 

derivative )...,3,2,1n()x(f )n2( =  of an even nature reach the maximum value at 

the point 0x = . 

The suitable numerical integration quadrature is that of Gauss Legendre (GL) when 
the function to be integrated has a weight function )x(w  form x . The general form 
of the quadrature is given by [3]: 

∑∫
=

=
η×=××=ν

Nj

1j
jj

1
0s )(fbxd)x(fx           (10) 

The weight function does not intervened in the calculation of the right sum of the 
relation (10). The integration points jn  and the coefficients jb  for N  = 12 are 
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presented in Table 1. They are given starting from the positive roots of the odd 
Legendre polynomial of order 25 by the following relations [3, 8, 9]: 

2
jj ξ=η ,   N,...,2,1j2b 2

jjj =ξ×σ=         (11) 

More details and extensive collection of tables of abscissas and weights for Gaussian 
quadrature formulas is contained in Ref. [8]. 

To determine the quadratures of order N , it is necessary initially to determine the 
roots and the corresponding coefficients of the Legendre polynomial of order 2 N  + 1, 
and used the {Eq. (11)} only for the positive roots to determine the considered 
quadrature. 

In the general case, one interested to determine the value of the Mach number in the 
supersonic flow points. The obtaining of the PM function value is only a way for 
calculation.  

If 0s >ν  is given, it is necessary to determine the correspondent value of *TTs <  
as solution of (6). This problem is called by inverse problem. Physically there is one 
solution. By substitution the obtained value of sT  in (3), one cans deduct the value of 

sM . 

Table 1: X-coordinates and associated coefficients of the Gauss Legendre 
with weight function for N = 12 

j  jn  jb  

1 0.0150957326903243 0.0036906784746633 
2 0.0594710569757861 0.0142083221076484 
3 0.1304454344836689 0.0299654709534825 
4 0.2237315839551131 0.0485585350762163 
5 0.3336944609748679 0.0670965784946015 
6 0.4536916527396207 0.0825975254591715 
7 0.5764746285191373 0.0923981606785536 
8 0.6946266154271490 0.0945224752917305 
9 0.8010106761709498 0.0879584949065280 

10 0.8892010419046903 0.0728062821925218 
11 0.9538724158796266 0.0502785894275588 
12 09911336801673817 0.0225855546319901 

The solution of the inverse problem of (6) is made by the use of the bisection 
algorithm [3], with *TTs <  (each value of 0T  has his correspondent value of *T  
[2]). One can choose the beginning interval containing sT  by 1T  =  0 K and *TT2 =  
or 0T . The value of sT  can be given with a precision ε  if the interval of subdivision 
number K  is satisfy by the following condition [10]: 

1TLog4426.1K 0 +






ε

×=             (12) 

If ε = 10-6 is taken, the number K  can’t exceed 32. 



T. Zebbiche 

 

680 

3. APPLICATION 
To obtain the supersonic Minimum Length Nozzle (MLN) giving a uniform and 

parallel flow at the exit section ( EMM =  and 0E =θ=θ ), it is necessary to diving 

the wall of an angle *θ  at the throat by [4]: 

2E
* ν=θ               (13) 

This situation is presented in figure 3. The relation (13) is valid for the two 
dimensional MLN. For the axisymmetric geometry MLN [11], the relation between *θ  
and Eν  must be determined numerically. Where the relation (13) is not valid for this 
case. 

 
Fig. 3: Expansion center for MLN configuation 

For the Plug Nozzle, the deviation of the nozzle at the throat is given by [5] 

E
* ν=θ . The term Eν  is equal to the value of the PM function corresponding to the 

exit Mach number of the nozzle. 

The Mach number *M  just after the expansion can be consequently given. It 
corresponds to the PM function when ** )M( θ=ν . 

In the first case, one calculate the value of *T  as solution of (6) by substitution of 
*θ  in the place of sν . It is noticed that *T  is different to *T  (temperature at the throat 

correspond to 1M= ). By substitution *T  in the relation (3), one obtains the value of 
*M  just after the expansion, which correspond to the value of the Mach number in the 

first point of the last right running characteristics of the zone of Kernel. 
We know that in the zone of Kernel, there are infinite number characteristics which 

result from point A  and reflect on the symmetry axis. In the calculation, if one want 
high precision, one choose high finite number of characteristics, which result of high 
time processing.  

To minimize the time of calculation, it is necessary to choose a robust quadrature to 
evaluate the integral (6), where sν  is replaced by incremented value of θ  in the point 
A . Thus, this point is a discontinued point in parameters, where *0 θ≤θ≤  and 

*MM1 ≤≤ . 
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4. RESULTS AND COMMENTS 
Table 2 presents the effect of the developed Gauss Legendre quadrature order on the 

convergence of the problem. The selected example is for 0T  = 3500 K and sM  = 6.00. 
This example request for a raided order quadrature compared to the other values 
( 0T , sM ) for same desired precision. 

The given quadratures results are always lower that the exact solution, ie. the 
convergence of the solution will take place in a monotonous way. We can deduce that 
only 12 points of the presented quadrature, the calculation gives as an accurary of 10-6. 

Then, some is ( 0T , sM ), one can use the quadrature of order N  = 12 to the 
maximum to have the better precision with ε  = 10-6. For the same example, the 
trapezoid and Simpson’s quadratures with constant step request for a minimum number 
of points presented in Table 3. 

Table 2: Effect of the Gauss Legendre quadrature order on convergence 

N  ν  N  ν  
1 84.64126548 7 97.5603689 
2 95.15389223 8 97.5609629 
3 96.95735518 9 97.56108289 
4 97.47123155 10 97.56110527 
5 97.54221288 11 97.56110958 
6 97.55736411 12 97.56111080 

Table 3: Effectiveness of quadratures for a given precision 

 Trapezoid Simpson Simpson 
 Ref. [10] Ref. [3] Ref. [1] 

GL 
quadrature 

110−=ε  30 18 10 4 
210−=ε  129 70 12 5 
310−=ε  1869 1002 38 7 
410−=ε  8686 4648 158 9 
510−=ε  40495 21644 716 10 
610−=ε  195551 104174 3436 12 

For the trapezoid and Simpson’s quadratures, one has to control of fixation of the 
digits decimal for wanted precision. Since the error relations of these quadratures does 
not give any information’s on the minimum number of points which it is necessary to 
obtain the desired precision, considering the properties (4). 

One can have the same precision ε  by using the trapezoid and Simpson’s 
quadratures with a lower number of points that indicated in Table 3, if the condensation 
of nodes [6] is used towards the point *TT =  of the interval of integration [ sT , *T ]. 
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In this case, the values given by the Simpson’s quadrature are presented in Table 3. For 
example, if ε  = 10-6, we needs only 3436 points. 

Of course, the evaluation of the PM function using the stretching function request 
some additional mathematical operations compared to that evaluated without 
condensation.  

The values presented in the Table 4 demonstrates that, in our flow field calculation 
( K3500T0 < , 00.6Ms < ), the maximum order of the GL quadrature can’t exceeds 
12 to have an accurary better than 10-6. 

If one take into account, the variation of )T(Cp , the stagnation temperature 

influences the size of this function. The numerical values for some values of M  and 0T  
are presented in Table 5.  

The calculated PM function values for 0T  = 298.15 K can represent the values of 
the PM function, but calculated by using the HT model. For the case of γ  = 1.402, the 
value are calculated by using the PG relations [7].  

Numerical calculation shows that there is difference in spite of low temperature. For 
example, when 0T  = 298.15 K and M  = 3.00, we obtain an error ε  = 0.006 %. 

Between the PG and HT models, when 0T  is high, the errors is not negligible which 
is equal to ε  = 9.70 % if M  = 3.00 and 0T  = 2000 K [1]. 

Table 4: Minimum order of the GL quadrature giving ε = 10-6  

 Mach number 
 1.5 2.0 3.0 4.0 5.0 6.0 

0T = 1000 K 4 5 8 9 10 11 

0T = 2000 K 4 6 8 9 10 10 

0T = 3000 K 4 6 9 10 11 12 

Table 5: Numerical result of the HT Prandtl Meyer function 

Stagnation temperature 0T  (K) 
 γ   = 1.402 [7] 

298.15 1000 2000 3000 
M = 1.5 11.890 11.890 12.400 12.715 12.822 
M = 2.0 26.337 26.337 27.577 28.646 29.017 
M = 3.0 49.651 49.648 51.744 54.989 56.173 
M = 4.0 65.622 65.617 67.890 72.624 75.021 
M = 5.0 76.714 76.707 78.983 84.262 87.617 
M = 6.0 84.715 84.707 86.983 92.392 96.197 

The Table 6 presents some numerical values of Mach number when the 
correspondent value of the PM function is given. The aim of presentation of this Table 
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is to determine the Mach number *M  just after the expansion for the design of the 
supersonic nozzle for internal flow, or to determine the distribution of the Mach number 
on the surface of the supersonic pointed airfoil, for external flow.  

For the case of PG model and HT model when 0T  = 298.15 K, one present the 
results by 6 digit decimals, to view clearly the deference between the two models for 
low temperature, because the error is letter compared to the case for high temperature, 
where one present only 3 digit decimals. 

Table 6: Mach number correspond to the given PM function value 

Stagnation temperature 0T  (K) 
ν  (deg) γ   = 1.402 [7] 

298.15 1000 2000 3000 
1 1.081863 1.081827 1.079 1.079 1.078 
5 1.256671 1.256645 1.249 1.246 1.245 

10 1.435382 1.435368 1.421 1.414 1.411 
20 1.775970 1.775977 1.745 1.726 1.719 
30 2.135811 2.135849 2.085 2.044 2.0331 
40 2.541142 2.541227 2.465 2.389 2.366 
50 3.018175 3.018335 2.912 2.780 2.741 
60 3.603234 3.603517 3.461 3.243 3.173 
70 4.354323 4.354814 4.164 3.821 3.692 
80 5.374227 5.375098 5.111 4.587 4.348 
90 6.867304 6.868933 6.469 5.670 5.243 

100 9.309331 9.312729 8.627 7.319 6.580 
 

  
Fig. 4: Variation of *θ  versus EM  Fig. 5: Variation of *M  versus EM  

Figure 4 presents the variation of the expansion initial angle *M  at high 
temperature of the D2  MLN. Thus the more the value of 0T  increases, more there is 
opening of the wall at the throat.  
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The curves are almost confounded until approximately 00.2Ms = , then start to 
differentiate. Between curves 4 and 3, one can notice a small difference between the 
values of a PG and HT models. 

On figure 5, one presented the HT variation of the Mach number *M  at point A  of 
the throat versus EM  of the nozzle. Then, this figure shows that there is an 
discontinued expansion cantered at the point A  which increases the Mach number of 

1M =  to *MM = . 

One know that the PG model does not depend on 0T , and that the value of *M  
depends on 0T  for HT model, which influences the nozzle design. Our interest of this 
variation is that *M  take account of the variation of 0T  and that this variation 
increases if 0T  increases [4]. 

Consequently, all the design parameters of the nozzle (length, mass of the structure, 
thrust coefficient, thermodynamic parameters,.) of these two types of nozzles depends 
primary on the stagnation temperature 0T , especially if it starts to exceed 1000 K [4, 5]. 

5. CONCLUSION 
Gauss Legendre formulae for regular function but has singularity in first derivative 

has been extended to evaluate the Prandtl Meyer function at High temperature, which 
occur in the supersonic external and internal flow field application, lower than the 
dissociation threshold of the molecules.  

This quadrature makes very fast calculation compared to the other existed 
quadrature. The profit in time processing calculation can arrive, for high precision, to 
350% compared to the Simpson’s quadrature with stretching function for example. 
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