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Abstract - We propose in this paper, a numerical study of a planar impacting jet flow. 
The flow is assumed isothermal, laminar and unconfined. The developed computer code is 
based on the finite volume method, which was used to discretize the N-S equations. The 
code allowed us to simulate the physical phenomenon’s taking place in the jet flow. The 
work focuses, on the description of the evolution of the jet and the presentation of the 
different characteristics of the flow, for different values of the Reynolds number and the 
impacting height. Calculations were made for values of the Reynolds numbers ranging 
from 0.01 to Re = 2000, i.e. in the limits of laminar flow regime, and for values of the 
ratio between the height of the outlet nozzle-impact surface of 0.1 to 20. The theoretical 
and numerical approaches of this work are confronted with the experimental works of 
Sholtz et al., [2]. 
Résumé – Dans cet article, on vous propose une étude numérique d’un jet plan 
impactant. Le flux est supposé isothermique, laminaire et non confiné. Le code 
informatique développé est basé sur la méthode du volume limité utilisée pour numériser 
les équations N-S. Le code nous a permis de simuler et reproduire le phénomène physique 
qui se produit dans le flux du jet. Ce travail se concentre sur la description de l’évolution 
du jet et la présentation des différentes caractéristiques de l’écoulement, pour différentes 
valeurs données du nombre de Reynolds et de la hauteur de l'impact. Les calculs ont été 
réalisées sur la base d’un nombre de Reynolds compris entre 0.01 jusqu’à Re=2000, c-à-
di dans la limite du régime laminaire du flux, et des valeurs du ratio entre la hauteur de 
la buse de sortie-la surface d’impact entre 0.1 et 20. Les approches théoriques et 
numériques de ce travail se confronte aux travaux expérimentaux de Sholtz et al., [2]. 
Key words: Isothermal – Numerical - Plane impacting jet - Laminar. 

1. INTRODUCTION

Most of the researches concerning the flow of an impacting jet are devoted to the 
axisymmetric jet type, emanating from a cylindrical nozzle, the reason being the 
simplicity in practice. In the laminar regime, the largest number of works is devoted to 
the influence of the parameters, such as the Reynolds number, the velocity profile in the 
inlet nozzle and the impact height of the jet on heat and mass transfers. Research works 
which fall in this category are those published by: Glauert [1], Saad et al., [7], Sparrow 
et al., [8, 9], Bergthorson et al., [10] and Van Heiningen et al., [11]. 

Among the studies of unconfined and isothermal configurations, similar to ours, is 
that of Sholtz et al., [2]. It includes theoretical and experimental work of an air jet 
impacting on a flat plate. For their theoretical study the jet flow in the nozzle is 
assumed, non-viscous and rotational and in the region near to the impact surface, it 
obeys the law of boundary layers. The experimental data measured in the nozzle by 
these authors, have been verified by the theoretical model of non-viscous fluids. 
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Furthermore, they found that there is a depression located on the wall at the exit of 
the nozzle, due to the viscosity when Re is small. According to the comments of Sholtz 
et al., [2], the flow along the impact surface resulting from the jet tends to detach from 
the impact surface and return toward the jet with the formation of fluid recirculation 
cells at low Reynolds numbers. 

In the domain of numerical resolution, difficulties appear during the boundary 
conditions implementation at the exit boundaries of the calculation domain and at the 
free boundaries because of the non confinement of the jet. Yuan et al., [3] as well as 
Mikhail et al., [4] imposed zero gradients as boundary conditions. Wang et al., [5] 
considered the same configuration and in order to obtain a model close to reality, the 
authors proposed new boundary conditions. Thus by imposing zero axial velocity, they 
managed to get the lateral velocity from the continuity equation. 

The jet type in our study is the plane jet which can be considered as a fundamental 
and academic research flow. It has wide technological applications in several industrial 
domains such as drying, cooling, heating, ventilation, air conditioning, in aerospace and 
in air curtain devices. The work that we are presenting here fits in this context. It 
consists of theoretical and numerical approaches for the study of the evolution of the jet 
flow under the influence of two parameters: the Reynolds number and the impact 
height. 

2. PROBLEM FORMULATION 

2.1 Assumptions  

We here consider an incompressible, permanent, isothermal, flow of a plane laminar 
air jet. All the physical properties of air, which was assumed Newtonian, are constant 
and the viscous dissipation is negligible. Theoretically in a first approach, our jet can be 
defined as the result of a jet of air through a rectangular cross-section which has a width 
of 0X2  and a length assumed very large as compared to the width, which allows to 
overlook the effects of edges, and to set the azimuthal velocity to zero so the problem 
can be assumed two-dimensional and perfectly symmetrical with respect to the nozzle 
axis (figure 1). As an infinite domain approach, we have chosen a finite domain, 
sufficiently large compared to the nozzle width ( 0X2 ) and such that the nozzle exit is 
separated from the impact surface by a distance H .  

2.2 Governing equations 

By setting the reference values equal to those at the nozzle inlet, we can define the 
following dimensionless variables: 

0Xx*x  , 0Xy*y  , 0maxVu*u  , 0maxVv*v  ,  

0*  , 0µµ*µ  et )V()gPp(*p 2
0max000   

The dimensionless equations governing the flow can then be written in the following 
form: 
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In these equations, we observe a single dimensionless parameter: the Reynolds 
number Re . Taking into account the jet geometry  which is characterized by the width 

0X  and the distance H  separating the nozzle exit from the  impact surface, the 
isothermal plane jet can perfectly be characterized by the following two dimensionless 
parameters: Re  and 0XH . 

  
Fig. 1: -a- Border streamline b  and -b- Representation of the computational domain  

2.3 Boundary conditions  

Normally, there is no flow at the domain exit boundaries BC  and AB , because the 
jet is unconfined. Therefore on these boundaries, we have considered the real fluid non-
slip conditions, i.e. 0vu  . However this is not possible, because the continuity 
equation is not satisfied. In order to remedy for this, Wang et al., [5] proposed, new 
conditions. For our case, we have adopted them:  

On BC : 0u   and  0
y
v




 . The pressure then takes the ambient value, 0Pp  . 

On AB : the lateral velocity u is deducted from the continuity equation and the axial 
velocity is zero, 0v  , 0Pp  . 
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On CF  and OA : 0u   and 0v   

On OD : 0u  , 0
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2.4 The numerical resolution method 

The numerical resolution of the set of partial differential equations governing the 
flow is ensured by the finite volume method and by using the Simpler algorithm 
proposed by Patankar [6] for pressure-velocity coupling. The mesh used in the 
computations is non-uniform and structured. Given the symmetry of the problem, we 
only considered half of the domain determined by the rectangular section noted ( TX  × 

TY ).  



A. Aliouali et al. 

 

554 

The convergence of the overall solution is considered to be reached when the total 
mass residual of the fluid in the field is less than 10-4 % the mass flow at the entrance of 
the nozzle. The influence of the size of the study domain and the number of points in the 
mesh were investigated by considering as criteria, the maximum lateral velocity maxU  
and the maximum stream function value max , in the computational field. The 
results of this preliminary investigation are grouped in Table 1. We note that the criteria 
values at the chosen different calculation conditions are very close to each other. In 
order to minimize the computational time we chose the study size ( 00 X58X51  ) and 
the number of nodes in the mesh size (31 x 31) for all remaining computations. We have 
adopted the reference state, 100Re  and 8X/H 0  .  

Table 1: Maximal lateral velocity and its location in  
the whole calculation domain, for 100Re  and 8X/H 0   

Calculation 

domain size 

Mesh 

grids 
maxU / 0maxV  Location of maxU  max  

   0X/x  0X/y   

131X0 x 138X0 31 x 31 0.6648 2.8416 0.5282 3.3354 
121X0 x 128X0 31 x 31 0.6647 2.8244 0.5282 3.2757 
111X0 x 118X0 31 x 31 0.6646 2.8059 0.5282 3.2104 
51X0 x 58X0 31 x 31 0.6645 3.1205 0.5282 2.6678 
51X0 x 58X0 41 x 41 0.6661 3.0947 0.5282 2.6555 
51X0 x 58X0 51 x 51 0.6663 3.09719 0.5282 2.6515 

3. RESULTS  

3.1 Evolution of the jet as a function of the Reynolds number 

In the nozzle, because the velocity profile does not vary significantly between the 
entry and the exit for 100Re  (curve 3 corresponding to 8X/H 0   in figure 2), the 
flow of the fluid must obey the Poiseuille plane law for a fully developed laminar flow 
between two fixed planes. For a developed Newtonian fluid whose profile is parabolic 
in shape, the theoretical pressure loss between the entry and the exit of the nozzle, i.e. 

))PP(p( ejinj  , is given in dimensionless form by: 
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Our calculations are performed in a very large Reynolds number interval which 
stretches from 0.01 to 2000 which is almost the limit of the laminar flow. In figure 3, 
we find a good agreement between the theoretical and the calculated values and the flow 
in the nozzle verifies Poiseuille law. 
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Fig. 2: Profile of velocity v for 
various values of 0X/H  

Fig. 3: Pressure loss 

 2
0max00bejinj v/X)H/PP(   for 8X/H 0   

From the nozzle exit onwards a perfect (or non-viscous) fluid, must obey Bernoulli 
law of mechanical energy conservation between two points. Considering points 1 and 2 
on the central streamline, point 1 being located at the exit of the nozzle, where 

1VV 10maxej   and point 2 at the interface of the impact surface, where 

1VV 00maxs  , we deduce: 
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Mechanical energy is not preserved for a real fluid due to the viscous losses. Curve 2 
in figure 4, shows us that in fact )pp( ejs  , is largely negative when Re  is less than 
10 where viscosity plays a very important role even in the free part of the jet. The 
pressure at the nozzle exit is therefore superior to that of the impact surface; it is this 
difference in pressure which pushes the fluid to the impact surface by overcoming the 
viscous force. The value of )pp( ejs   becomes positive when Re  exceeds 10, and 

tends towards 0.5 when Re  is very important. The fluid behavior in the free zone 
therefore approaches that of a perfect fluid when Re  increases. 

Also, in their study of impinging round jets, Sholtz et al., [2] found that there is a 
depression in the vicinity of the jet because of the high viscosity when Re  is small. Let 

minP  be the algebraic minimum pressure value in the whole calculation domain. 
Curve 1 in figure 4, shows the evolution of minP   as a function of Re . The location 
of this minimum corresponds to the center of the depression. This depression center is 
located on the wall at the exit of the nozzle up to 500Re  . It moves progressively 
towards the impact surface for values of Re  greater than 500. The absolute value of 

minP  decreases very rapidly with Re . 
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Fig. 4: Pressure differences 

)V/P(and)V/PP( 2
0max0min

2
0max0ejs 

versus Re  for 8X/H 0   

Fig. 5: W versus to the Reynolds 
number for 8X/H 0   

From the exit of the nozzle onwards, the projected fluid begins to interact with the 
surrounding air. The amount of entrained air is characterized by the entrainment rate 

W , defined by: 1
W

W

0

max
w  .  

Or by the equivalent equation using the stream function:  1
0

max
w 




 . 

In figure 5, we find that the rate of entrainment W  increases very slowly at low 
Reynolds numbers. From 1Re   onwards, W  undergoes a remarkable progress, and 
reaches its maximum at 30Re  . After this critical point, W  decreases with the 
Reynolds number. The increase of Re , leads to two opposite effects on the amount of 
entrained gaz, due to the increase of the force of inertia with Re . The velocity on the 
border stream line b  -which separates the projected fluid and the entrained fluid- 
increases, which tends to reinforce the entrainment. Also, the viscosity becomes less 
and less important than the force of inertia when Re  increases. The development of the 
boundary layer is therefore less pronounced thereby reducing the flow induced around 
the jet. These two opposite effects are responsible for the maximum observed for W  
when Re  is in the vicinity of 30.  

The flow along the impact wall resulting from the jet impact tends, in accordance 
with the observations of Sholtz et al., [2], to take off from the impact surface because of 
the depression and to return towards the jet with the formation of recirculation cells. 
The same behavior is observed at low Reynolds numbers (0.01 to 300). Indeed the 
results presented in figures 6-a, -b, -c, -d, and -f; correspond to low Reynolds numbers 
comprised between 0.01 and 300. Fluid recirculation regions are observed. In such 
domains the increase of the Reynolds number leads to a very rapid increase of the 
velocity on the border streamline b . The size of the domain of the entrained fluid 
increases and induces a more important entrainment of the neighboring fluid.  

From 300Re   onwards, the recirculation phenomena are no longer observed. In 
figures 7-a, -b, and -c, the recirculation regions disappear, and this limit is in perfect 
agreement with the observations of Sholtz et al.,[2]. 
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Fig. 6: Streamlines at low Reynolds 
numbers for 8X/H 0  , observation of the recirculation regions 

   
Fig. 7: Streamlines at high Reynolds  

numbers for 8X/H 0  , absence of the recirculation regions 

In figures 8-(a-1) and 8-(a-2), we can notice that the axial velocity v  remains 
almost constant inside the nozzle up to the opening (which corresponds to 0X8y  ) 
because of the constraint imposed at the wall. From this point onwards, the situations 
differ in function of the Reynolds number. 

At low Reynolds numbers, in practice when Re  ≤ 10, v  undergoes a sudden drop 
(curve 1, in figures 8-(a-1) and 8-(a-2)). Here occurs the creeping flow of the fluid 
which changes from the axial direction to the lateral direction at 0X7y  , while the 
lateral velocity u already takes its maximum value (curve 1 in figures 9-(b-1) and 9-(b-

2)). Then follows the very thick boundary layer up to the wall. 
When Re  increases, the core -corresponding to a value of the velocity v  nearly 

equal to that of nozzle- appears, as can be clearly noticed on curve 5 in figures 8-(a-1) 
and 8-(a-2). At the same time, the maximum of the velocity u grows (the curve 5 in 
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figure 9-(b-1) and 9-(b-2)) and its position becomes closer to the wall, resulting in a 
decrease in the thickness of the boundary layer. 

  

Fig. 8: Evolution of v  versus the distance ( 0Xy ) 
for different Reynolds numbers and 8X/H 0   

  
Fig. 9: Evolution of u  versus the distance ( 0Xy ) 
for different Reynolds numbers and 8X/H 0   

3.2 Evolution of the jet as a function of the nozzle-impact surface distance 

In figure 10, we see the evolution of the influence of the distance ( 0X/H ) -
separating the nozzle from the impact surface- on the jet characteristic velocities, 

maxU  and ejV . The velocity maxU  varies considerably with H . On curve 1, we 

find that the ratio ( maxU / 0maxV ) may exceed unity when ( 0X/H ) is very small. In 
this case, the velocity profile is no longer parabolic at the nozzle exit. At the exit of the 
nozzle, the central velocity ejV  is less than 0maxV  as shown by curve 2 in Figure 10 

and there is a flattened profile. When 2X/H 0   the velocity maxU  decreases 
slightly, while ejV  the velocity approaches increasingly the   0maxV  value.   
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Fig. 10: maxU  and ejV  versus 0X/H  

for 100Re   

Fig. 11: W  versus 0X/H  for 100Re   

Figure 11 shows the entrainment rate as a function of ( 0X/H ). This entrainment 
rate is directly proportional to ( 0X/H ) at high values of ( 0X/H ). But if the nozzle is 
brought closer to the impact surface there will be an increase in lateral velocity and the 
latter can reach values greater than the maximum value in the nozzle inlet 0maxV  (see 
figure 10). This phenomenon is responsible for a more important entrainment of the 
fluid in the neighbourhood. A growth of W with the decrease of ( 0X/H ) is therefore 
noticed when ( 0X/H ) is less than 2. 

Figure 12 illustrates the evolution of the pressure difference ( ejs1 pp  ) as a 

function ( 0X/H ). As shown in figure 10, the maximum velocity ejV  at the exit of the 

nozzle is very close to 0maxV  when ( 0X/H ) is high, and decreases with the nozzle - 
impact surface distance. This implies that the kinetic energy available at the exit of the 
nozzle and which is convertible into pressure on the impact surface- increases with (

0X/H ). At the same time, the viscous loss between the nozzle and the impact surface 
is directly proportional to the distance ( 0X/H ). 

These two opposite effects are responsible for the change in the evolution of (
ejs1 pp  ) recorded in the domain for values of ( 0X/H ) in the interval 0.1 to 2.  

Beyond the value ( 0X/H ) = 2, we notice, whatever the Reynolds number, the 
viscous loss remains directly proportional to the distance ( 0X/H ). At low values of the 
Reynolds number Re ≤ 30, where viscosity has a very important effect, viscous loss 
exceeds the kinetic energy possessed by the fluid at the nozzle exit and therefore (

ej1s1 pp  ) < 0, i.e. the motor pressure on the impact surface is lower than that at the 
nozzle exit.  

It decreases with increasing Reynolds number and for Re  ≥ 808, it becomes close 

to the theoretical limit for a perfect fluid: 5.0
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consistent with the experimental data measured by Sholtz et al., [2], and lead to the 
conclusion that the fluid is practically non-viscous for Re  greater than 808. 
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Fig. 12: Pressure differences 
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Fig. 13: versus  2
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Figure 13 summarizes the evolution of the motor pressure ejP  at the exit of the 

nozzle. For small values of ( 0X/H ), ejP  reaches a very important value compared to 

the kinetic energy )V.( 2
0max0 .  This high value of ejP  is justified for small values of 

( 0X/H ), by the lateral acceleration of the fluid which converts pressure energy into 
kinetic energy. The pressure ejP  is practically zero for ( 0X/H ) values greater than 2. 

While we see a slight rise due to the increasing viscous loss with ( 0X/H ).  

The dimensionless viscous friction loss  bejinj H/PP   2
0max00 V./X  , 

between the nozzle entrance and its exit is also sensitive to the nozzle - impact surface 
distance. Figure 14 shows this evolution for 100Re  . When ( 0X/H ) is very low, the 
pressure loss in the nozzle is much smaller than 0.02, which is the value estimated by 
Poiseuille model. The difference between the two calculations becomes low when 
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)X/H( 0  is greater than 2. But we see a slight increase when ( 0X/H ) is high, this is 

due to the growing viscous loss with ( 0X/H ). 

Another dynamic feature of the jet is the pressure loss coefficient, defined by Sholtz 
et al., [2] as: 

2
0

an
U

pP



  

where, 0pa  , Motor ambient pressure en [Pa], np , Non-perturbed motor pressure 
inside the nozzle en [Pa] and 0maxV3/2U   , Mean velocity at the nozzle entrance 
[m/s]. 

As defined by Sholtz et al., [2], the coefficient   is function of impact height 
)X/H( 0  and the Reynolds number Re , due, respectively, to the constriction of the 

flow and viscous loss at the nozzle exit. The results are presented in figure 15, where we 
find, depending on the height of impact, the coefficient   reaches a very high value 
when ( 0X/H ) is small. This is justified by the importance of the constriction. However 
  is lower for ( 0X/H ) ≥ 2, but a slight rise can be seen due to the increase of the 
viscous loss with ( 0X/H ).  

As a function of Reynolds numbers and for low Re  values such as 100Re  , we 
notice a   value more important than that at Re  ≥ 808. This is due to the preponderant 
influence of viscous loss, at 100Re  , from the nozzle exit onwards. For Re  ≥ 808, as 
indicated in figure 12, the fluid can be considered perfect in this case, and hence the 
pressure loss coefficient   would be independent of the Reynolds number. Indeed as 
can be seen in figure 15, the values of the coefficient   are very close. Because of the 
very low influence of viscosity on jet flow, the pressure loss coefficient β takes the 
value corresponding to the theoretical limit for a perfect fluid. Sholtz et al. [2] arrived at 
the same conclusion for a circular jet.  

 
Fig. 15:     versus 0X/H  for different Reynolds numbers. 

4. CONCLUSION 

In this work, we developed a computer code in a two-dimensional domain for the 
resolution of the problem of the plane impinging jet. The flow is assumed to be laminar 
and isotherm. The configuration is non-confined. By making a suitable choice of the 
boundary conditions, because of non-confinement, the accuracy of solutions is 
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satisfactory and the size of the computational domain has very little influence on the 
velocity field.  

Our results are validated using the Poiseuille plane model in the nozzle and show 
that the effect of viscosity on jet flow is small when the Reynolds number Re  ≥ 808. 
This allows us to consider the jet flow at Re  ≥ 808 practically as an inviscid fluid flow. 
Sholtz et al., [2] arrived at the same conclusion for a circular jet.  

At low Reynolds numbers recirculation cells are created due to the depression. 
While they are absent, for Reynolds numbers greater than 300Re  . When the 
Reynolds number is less than 30 and due to the viscous behavior  of the fluid, between 
the exit of the nozzle and the impact surface, viscous friction loss exceeds the kinetic 
energy possessed by the fluid at  the nozzle exit, so that ( 0PP ejs  ), Which makes 
the motor pressure on the impact surface lower than that at the nozzle exit. 

For very low distances between the nozzle exit and the impact surface 
)2X/H( 0  , the flow is modified up to the inside of the nozzle. The axial velocity 

profile which no longer follows the Poiseuille model is no longer parabolic, but 
becomes more and more flattened and the viscous loss becomes less and less important. 
Whereas for the heights )2X/H( 0  , the presence of the impact surface has very little 
influence on the behavior of upstream flow.  

Whatever the Reynolds number, the viscous loss is directly proportional to the 
distance ( 0X/H ). It decreases with increasing Reynolds number and approaches the 
theoretical limit for the perfect fluid. 

NOMENCLATURE 

0X2d , Width of the nozzle [m] g , Universal acceleration 

H , Distance nozzle-impact surface [m] P , Thermodynamic pressure [Pa or atm] 
HHH Tb  , Length of the nozzle 

        considered in the calculation [m] 
TH , Height of the total calculation  

         domain [m] 

aP , 1 [atm] = 1.01325 105 [Pa], 
      Atmospheric pressure 

0P , Fluid thermodynamic pressure at 
        static state [Pa or atm] 

p , Motor pressure  [Pa] 0pa  , Ambient motor pressure [Pa] 

ejP , Pressure at the point of discharge (on  

        the axis Oy at the exit of the nozzle) 
injP , Motor pressure at the nozzle 

         entrance [Pa] 

nP , Non-perturbed motor pressure in the  
        interior of the nozzle [Pa] 

sP , Motor pressure on the surface of impact  
        [Pa] 

minP , Algebraic minimal pressure in all  
                the calculation field [Pa] 

0maxV3/2U  , Mean velocity at the  
                                nozzle entrance [m/s] 

u , Lateral velocity component [m/s] Re , Reynolds number 

maxU , Maximal lateral velocity defined  
                  in the whole calculation domain  

ejV , Axial central discharge velocity at the 

          exit of the nozzle [m/s] 

0maxV , Maximal velocity at the entrance to 
                the nozzle [m/s ] 

sV , Axial velocity at the interface of the  
        impact surface [m/s] 

V


, Vector velocity of the flow jet [m/s] v , Axial component of the velocity  

0W , Initial mass flow of air to the inlet  
          nozzle [kg/s] 

maxW , Maximal mass flow rate of air in 
                   the calculated field [kg/s] 
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x , Space coordinate lateral direction x  W , Mass flow [kg/s] 

TY , Total axial dimension of the  
          computational domain [m] 

TX , Total lateral dimension of the 
          computational domain [m] 

0X , Half the width of the nozzle [m] y , Space coordinate axial direction y, m 

0, in the matter of the inlet nozzle *, in the matter of the dimensionless value 
 , Pressure loss coefficient µ, Dynamic viscosity [kg/(m.s)] 

b , Line boundary between the fluid  
        projected by the nozzle and the leads 

0µ , Dynamic viscosity value at the entrance 
         to the nozzle [kg/ (m.s)] 

0 , Density value at the nozzle entrance 
         [kg/m3] 

W , Rate of the surrounding air, training 
           without unit 

 , Non-dimensional stream function value  
        in the whole plotted domain 

max , Maximal stream function value in 
                   the whole plotted domain 

min , Minimal stream function value in  
                 the whole plotted domain 00max00 )VX(Re   

0 , Value of   on the nozzle wall  , Density [kg/m3] 
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