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Potential flow over an inclined thin flat-plate 
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Résumé - Ce travail vise à prédire avec précision la distribution de la vitesse sur le côté 

d'une plaque plane face à un écoulement uniforme avec une inclinaison arbitraire. 

L'équation de Laplace régissant le problème a été résolue avec la méthode des différences 

finies et les résultats ont été comparés avec la théorie. Une corrélation simple de la 

distribution de vitesse est établie. 

Abstract - This work aims to accurately predict the velocity distribution along a flat-plate 

surface facing a uniform flow with arbitrary inclination. The Laplace equation governing 

the problem was solved with the finite difference method, and the results were compared 

with those come from theory. A simple correlation of the velocity distribution is 

established. 

Mots-clés: Ecoulement non-visqueux irrotationnel - Plaque plane inclinée - Théorie des 

écoulements potentiels - Point de stagnation. 

1. INTRODUCTION

Prandtl's boundary layer theory implies that in flows at high Reynolds numbers the 

velocity in the boundary layer varies quickly from zero directly on a bounding surface 

up to a finite value which corresponds to the inviscid limiting solution Re   [1]. 

Therefore, the velocity field of the inviscid flow region, where the viscous effects 

can be neglected, needs to be first determined before one can proceed to obtain the 

velocity distribution in the boundary layer, where the viscous effects are significant. 

The external flow over a flat-plate is a very common configuration in many 

engineering applications such as airfoils [2], solar collectors and building roofs [3], 

fibrous filters [4], etc. The inviscid velocity field around a flat-plate can be obtained 

using the two-dimensional potential flow approximation.  

The expression of the local velocity component parallel to the plate surface (y = 0) 

facing the uniform incoming flow can be derived from the conformal transformation of 

the potential flow solution past a circular cylinder or from Hess' theory as: 

  


sina/xfcos
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      (1) 

With f (x/a) the dimensionless distribution of the velocity for flow normal to the flat-

plate (α = /2) is given by: 
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where x and y are the axes respectively parallel and normal to the flat-plate. Despite the 

different results produced by (2) and (3), we can clearly see that both relations give an 

infinite velocity at the edges of the plate, which does not allow eventually for the 

determination of the boundary layer solution. 

Accordingly, this study was conducted in order to investigate the present problem 

and to provide a bounded distribution of the potential velocity along the flat-pate 

surface, as well as to locate the stagnation point.  

2. FORMULATION AND FINITE 

DIFFERENCE SOLUTION 

The flat plate of length 2a is inclined to the horizontal free stream at an angle α 

varying from 0 to π/2 as shown in figure 1. The flow is considered to be inviscid, 

incompressible and irrotational, so that the stream function satisfies the Laplace 

equation which is written in polar coordinates as: 
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which has to be solved subject to the following boundary conditions,  
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To obtain the numerical solution of the equation (4) in a domain of infinite extent, it 

is more convenient to introduce the following dimensionless transformation 
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Then the equation (4) and the boundary conditions (5) become, 
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Using a central finite difference scheme, the transformed equation (7) is rearranged 

as:  
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Fig. 1: (a) Physical domain, (b) Computational domain  

and the boundary conditions (8) read as: 
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where the flat plate surface is indicated in the computational domain by thick lines 

correspond to grid points identified by (i = n1, j = m  M) , (i = n2, j = m  M) and (i = 

1  N, j = M). The point successive over-relaxation method is used to solve the 

equation (9) and the criterion, 10k
j,i

1k
j,i

k
j,i 10/max   , is used at the end of 

each iteration to determine the convergence of the procedure.  

The computations were performed for 0 = 0.1 (which corresponds to r = 9a) and 

for different grids of N×M points in the ξ- and η-direction respectively with uniform 

grid spacing   and  until results become less sensitive to the grid refinement. 

Once the stream function is obtained the velocity can be determined from the 

Cauchy-Riemann equations. Since at the surface of the flat plate we have, rx   and 

rVu  , the velocity along the flat plate surface facing the uniform incoming flow 

can be calculated by: 
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where the minus (plus) sign corresponds to the first (second) half length of the plate. In 

finite difference approximation, the equation (11) can be written as: 
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The choice of the forward and backward difference schemes in (12) is not arbitrary 

but rather dictated by the flat plate surface - facing the uniform incoming flow - over 

which we need to determine the velocity distribution. 
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3. RESULTS 

The numerical results show that 









 sincos

U

u
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a

 is independent 

of the angle of inclination which means that the equation (1) holds; however, neither 

equation (2) nor equation (3) can successfully predict  a/xf  over the whole flat-plate 

surface. 

The figure 2 shows that the dimensionless velocity increases almost linearly for 0 < 

x/a < 0.6, then it increases more rapidly up to a maximum value of about 6.65 at the 

edge of the plate.  

 

Fig. 2: Variation of the dimensionless velocity  

along the flat plate surface for an inclination angle of 90°  

The comparison of the numerical results and the analytical solutions in the Table 1 

shows that the equation comes from the conformal transformation agrees very well with 

the numerical results on the greater portion of the surface of the plate except near the 

edges; whereas the equation comes from Hess' theory gives inaccurate predictions over 

the entire length of the plate. 

Based on the results of the present analysis and using OriginPro software, the 

function   a/xf  can be represented by the following approximate expression with 

relative error less than 5 %,  

))a/x98891.0(arcsin(cos

)a/x03183.1
)a/x(f            (13) 

The position of the stagnation point xsp  is also of interest when treating, for 

example, the heat transfer problem of such configuration under the assumptions of the 

boundary layer theory [3]. 

It can be derived as a function of the angle of inclination by setting x = 0 in the 

equation (1), which leads to the following expressions, 
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The position of the stagnation point calculated from the equations (14) and (15), and 

obtained from the numerical solution at different angles of inclination is shown in the 

Table 2.  

The results show a very good agreement between the numerical solution and the 

equation (14) for the entire range of the angle of inclination; whereas we can see that the 

numerical solution does not agree with the equation (15). 

Table 1. Comparison of the numerical solution and analytical solutions of f (x/a)  

 

Table 2. Comparison of the numerical solution and analytical solutions of (xsp / a)  

 

4. CONCLUSION 

From the results presented above, in the boundary layer type flow occurring along a 

flat-plate that makes an angle α with the free stream velocity U, the position of the 

stagnation point xsp is given by the equation (14), while the velocity distribution in the 

outer flow region can be predicted accurately using the equation (1) combined with the 

equation (13). 

NOMENCLATURE 

a, Half length of the plate α, Plate inclination 

r, , Polar coordinates , , Dimensionless coordinates 

u, Velocity parallel, flat-plate surface. , Stream function 

U, Velocity of the uniform flow , Dimensionless stream function 
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