Apport énergétique de la poursuite solaire sur deux axes par rapport aux systèmes fixes. Application aux capteurs plans

Mustapha Koussa^{1*}, Ali Malek¹ et Mourad Haddadi²

 ¹ Centre de Développement des Energies Renouvelables, B.P. 62, Route de l'Observatoire, Bouzaréah, Alger
 ² Laboratoire de Dispositifs de Communication et de Conversion Photovoltaïque, Département d'Electronique, Ecole Nationale Polytechnique, 10, Avenue Hassen Badi, El Harrach, Alger

(reçu le 14 Octobre 2007 – accepté le 25 Décembre 2007)

Résumé – L'objectif de ce travail consiste à montrer, dans le domaine des systèmes de conversion de l'énergie solaire, qu'ils soient photovoltaïques ou thermiques, l'intérêt énergétique de la poursuite solaire par rapport aux systèmes ayant une structure fixe, orientée plein sud et inclinée selon un angle optimal ou sur un plan horizontal. Ainsi, en premier lieu, nous avons établi une synthèse bibliographique à travers laquelle nous avons retenu des modèles proposés dans la littérature. permettant de calculer les différents angles optimums annuels, saisonniers et mensuels. Nous avons retenu également les modèles de reconstitution des valeurs de l'éclairement du au rayonnement global sur une surface d'inclinaison et d'orientation quelconque. Ceci a été suivi par une méthodologie qui permet de reconstituer l'éclairement du rayonnement global incident sur une surface munie d'un système de poursuite à deux axes. Ces modèles sont fonction des éclairements dus au rayonnement direct mesuré sur un plan normal, diffus et global mesuré sur un plan horizontal. Les données utilisées dans ce travail sont relatives à deux sites algériens. Bouzaréah et Ghardaïa situés respectivement au nord et au sud de l'Algérie. A partir de ces données, plusieurs journées représentatives pour chaque été de ciel, et des saisons de l'année ont été choisies. Comme résultats, nous avons constaté que d'un état du ciel à un autre, un système de poursuite devient avantageux ou non nécessaire. Cependant, pour un état de ciel complètement couvert, là où il n'y a que l'éclairement diffus, un plan horizontal reçoit 30 % à 45 % d'énergie supplémentaire par rapport à un système muni de poursuite et 15 % à 25 % par rapport à un système fixe. Par contre, pour une journée claire, le système de poursuite devient plus intéressant, dépendamment de la saison, il reçoit entre 30 % à 40 % d'énergie supplémentaire. Pour les journées partiellement claires, l'intérêt de l'utilisation d'un système de poursuite dépend surtout de la couverture nuageuse au cours de la journée considérée qui est caractérisée par l'indice de clarté.

Abstract - The objective of this work is to show, in the solar energy converting systems applications as photovoltaic or thermal, the interest of the solar tracking system compared to those fixed, south facing and inclined at an optimal angle or an a horizontal plane. Thus, in the first step, we have prepared a synthesis literature through which, we learned several models proposed in the literature, for calculating annual, seasonal and monthly optimum angles. We also selected models reconstructions of global solar radiation on any tilted and oriented surface, as well as the methodology for the recovery of the same compound incident on a surface with a two axis sun tracking system. These models are based on direct radiation measured on a normal plane, diffuse and global radiations measured on a horizontal plane. The data used in this work are relative to two Algerian's sites as Bouzaréah and Ghardaïa respectively in north and south. In this work, from these data, we choose several days representing each sky states and spread over the different seasons of the year. As results, we found that dependently of sky state, a continuous solar tracking system is or advantageous not necessary. However for a state of sky completely or almost clearly, a solar tracking plane enables us to recover on average 30 % of additional energy compared to the fixed systems, tilted according to an optimal angle and south facing. Il is also enables us to recover on average 40 % of additional energy compared to a horizontal plane. On the other hand for the completely covered days, an horizontal plane leads us to recover average 50 % of additional energy, compared to those received on the two tracking system. For the partially clear days, we can also say that for days characterized by an clearness index lower than 0.55, a tracking system is not necessary and it becomes it only starting from the values of clearness index higher than 0.60.

Mots clés: Eclairement - Irradiation - Diffus - Direct - Global - Poursuite - Inclinaison optimale.

* mustaphakoussa@hotmail.com

515

M. Koussa et al.

1. INTRODUCTION

Généralement, sous diverses conditions, les capteurs plans thermiques sont installés suivant une inclinaison et une orientation fixes. Cette dernière est choisie vers le sud ou le nord, suivant la situation géographique du site considéré par rapport à l'équateur. Ceci étant, pour que les capteurs puissent absorber le maximum d'énergie au voisinage de midi, temps solaire vrai, là où la hauteur du soleil est au zénith et les valeurs de l'éclairement du au rayonnement solaire sont maximales. Par ailleurs, pour pouvoir répondre aux besoins énergétiques, le champ de capteurs doit d'une part avoir une surface suffisante et d'autre part des caractéristiques thermomécaniques devant être les meilleurs possibles. Mais, de nos jours, le prix des équipements solaires et surtout avec de tels matériaux étant très élevé, peuvent être pénalisant par un investissement considérable. Ce qui conduit donc à chercher des méthodologies qui permettent donc de minimiser ce dernier, sans incidences sur les performances de ces systèmes. Parmi ces paramètres, l'inclinaison et l'orientation du champ de capteurs sont les plus importantes. Une des meilleures solutions proposées, c'est d'orienter le champ de capteurs vers le sud et d'incliner sa structure suivant un angle optimal pré calculé pour le site considéré. Mais cette configuration n'est bénéfique que pour la période avoisinante midi temps solaire vrai, là où l'intensité de l'éclairement du au rayonnement solaire soit maximale. Mais cette méthode reste ainsi limitée, sans apport supplémentaire pour les premières et les dernières heures de la journée considérée.

Une autre méthodologie pourrait être utiliser qui permettra de remédier à cet inconvénient, c'est l'utilisation d'un système de poursuite qui aurait pour rôle de varier continuellement l'un ou les deux paramètres, pour que la valeur de l'angle d'incidence entre le rayonnement solaire et la surface de captation soit à sa valeur minimale. Ceci conduit à ce que la surface du système de capteurs plans reçoive le maximum d'énergie à chaque instant de la journée. C'est une méthode retenue dans certaines applications solaires spécifiques, telles que les systèmes de concentration. Dans le cas des applications solaires utilisant des capteurs plans, utiliser un mécanisme de poursuite solaire permet bien sûr d'augmenter le rendement de ces équipements. Economiquement, il sera nécessaire que ces systèmes ne seront bénéfiques que si le coût additionnel, relatif au mécanisme de poursuite (structure moto réductrice, commande et entretien) soit inférieur au coût des capteurs supplémentaires qui conduiraient à une même puissance produite avec un système ayant une structure fixe.

A partir d'une recherche bibliographique, des modèles proposés dans la littérature, permettant de déterminer l'angle d'inclinaison optimal d'un système de capteurs plans pour n'importe quel site, ont été retenus pour cette étude. Les valeurs de ces angles optimaux sont utilisées pour le calcul de l'irradiation globale sur un plan d'inclinaison et d'orientation quelconque. Les valeurs des irradiations horaires obtenues sont ensuite comparées avec celles reçues sur un plan horizontal et celles obtenues sur un système muni d'un mécanisme de poursuite à deux axes. D'autre part, pour la reconstitution de l'éclairement du au rayonnement diffus, nous supposons que la distribution de cette composante est anisotrope [1-5]. Le modèle de Baltas [3] a été retenu pour sa reconstitution, et également le modèle Temps et Coulson [2] pour reconstituer l'éclairement du au rayonnement réfléchi par le sol. Les données utilisées dans cette étude sont relatives aux sites de Ghardaïa et de Bouzaréah. Il s'agit de l'irradiation horaire directe mesurée sur un plan normal, et les irradiations diffuse et globale mesurées sur le plan horizontal.

Comme résultats, nous avons constaté que d'un état de ciel à un autre, un système de poursuite devient avantageux ou non nécessaire. Ainsi pour un état de ciel complètement couvert, là où il n'y a que de l'éclairement diffus, un plan horizontal reçoit 30 % à 45 % d'énergie supplémentaire par rapport à un système de poursuite et de 15 % à 25 % par rapport aux plans fixes, inclinés suivant un angle optimal et orienté plein sud. Par contre, pour une journée claire, le système de poursuite devient plus intéressant, dépendant de la saison, il reçoit 30 % à 40 % d'énergie supplémentaire. Pour les journées partiellement claires, l'intérêt de l'utilisation d'un système de poursuite dépend surtout de la couverture nuageuse au cours de la journée considérée qui est caractérisée par l'indice de clarté.

2. DESCRIPTION DE LA METHODOLOGIE

2.1 Calcul de l'éclairement global sur un plan quelconque

A un instant quelconque de la journée, l'éclairement du au rayonnement global reçu sur un plan d'inclinaison et d'orientation quelconques, est la somme des trois composantes du rayonnement solaire incidente sur le même plan à savoir, la composante directe, diffuse et réfléchie par le sol. Son calcul est obtenu par la relation suivante:

$$G(\beta,\gamma) = B(\beta,\gamma) + D(\beta,\gamma) + R(\beta,\gamma)$$
(1)

avec $G(\beta,\gamma)$, $B(\beta,\gamma)$, $D(\beta,\gamma)$ et $R(\beta,\gamma)$ sont respectivement les éclairements dus au rayonnement global, direct, diffus et réfléchi par le sol, incidents sur le plan considéré. A cet effet, la reconstitution de chacune de ces composantes sur un plan d'inclinaison et d'orientation quelconque est assurée par les expressions données ci-après.

2.1.1 Eclairement du au rayonnement direct

L'éclairement du au rayonnement direct sur un plan d'inclinaison et d'orientation quelconques étant directionnel, il est calculé par la simple relation suivante:

$$B(\beta,\gamma) = B_n \cos(\theta_i)$$
⁽²⁾

avec B_n et θ_i sont respectivement l'éclairement du au rayonnement direct sur un plan normal et l'angle d'incidence du rayonnement solaire direct sur le plan considéré. Dans le cas de la non disponibilité de B_n , il est nécessaire de reconstituer cette composante sur un plan normal à partir des valeurs des éclairements diffus et global disponibles sur un plan horizontal. Elle est calculée comme suit:

$$B(\beta,\gamma) = (G_{h} - D_{h})R_{b}$$
⁽³⁾

 G_h , D_h et R_b sont respectivement les éclairements dus au rayonnement global et diffus incident sur un plan horizontal et le facteur de forme qui est défini par:

$$R_{b} = \frac{\cos(\theta_{i})}{\sin(h)} \tag{4}$$

avec h qui représente la hauteur du soleil.

2.1.2 Eclairement du au rayonnement diffus

Dans notre étude, nous supposons que la distribution de l'éclairement du au rayonnement diffus est anisotrope. Pour ceci, nous avons choisi le modèle proposé par Baltas [3] qui est donné par la relation suivante:

$$D(\beta,\gamma) = D_{h}\left(\frac{1+\cos(\beta)}{2}\right) \left[1+F\sin^{3}\left(\frac{\beta}{2}\right)\right] \left[\frac{1+F\cos^{2}(\theta_{i})\sin^{3}(90-h)}{1+F\cos^{2}(\theta_{z})\sin^{3}(\theta_{z})}\right]$$
(5)

 D_h , β , θ_i , θ_z et h sont respectivement l'éclairement du au rayonnement diffus, l'inclinaison du capteur, l'angle d'incidence, la distance zénithale et la hauteur du soleil. F est un paramètre qui tient compte de l'état du ciel, et il se calcule par la relation suivante:

$$\mathbf{F} = 1 - \left(\frac{\mathbf{D}_{\mathbf{h}}}{\mathbf{G}_{\mathbf{h}}}\right) \tag{6}$$

Dans la relation (5), l'expression de droite est relative à la quantité d'éclairement provenant de la zone avoisinante du disque solaire, l'expression du milieu représente la fraction provenant de la zone de l'horizon, tandis que celle de gauche représente la fraction qui provient du reste de la voûte céleste [3-5].

M. Koussa et al.

Il faut remarquer aussi que pour un état de ciel couvert, le facteur F est égal à zéro, car

 $D_h = G_h$ et la composante diffuse sera réduite à l'expression proposée par Liu & Jordan [6], qui supposent que la distribution de l'éclairement du au rayonnement diffus est isotrope.

2.1.3 Eclairement réfléchi par le sol

L'éclairement du au rayonnement solaire réfléchi par le sol dépend fortement de la nature du sol et plus précisément de son albédo. Pour ce travail, le modèle de Temps et Coulson [2], qui tient compte de l'incidence du rayonnement solaire sur le plan horizontal, a été retenu. Il est donné par l'expression suivante:

$$R(\beta,\gamma) = \frac{1}{2}\rho G_{h}(1-\cos(\beta)) \left[1+\sin^{2}\left(\frac{\theta_{z}}{2}\right)\right] |\gamma_{s}-\gamma|$$
(7)

Il est à noter que, dans la formulation des expressions relatives au calcul des composantes du rayonnement solaire, apparaissent les coordonnées du soleil sur les divers repères et les coordonnées géographiques du site considéré. Aussi, nous donnons dans ce qui suit les différentes relations permettant de calculer ces paramètres.

2.2 Coordonnées du soleil

Dans le repère horizontal, les coordonnées du soleil sont la hauteur et l'azimut. Elles sont bien décrites par Duffie & Beckmann [7], et sont définies par les expressions suivantes.

a- Hauteur du soleil

$$\sin(h) = \sin(\delta).\sin(\phi) + \cos(\delta).\cos(\phi).\cos(\omega)$$
(8)

b- Distance zénithale

$$\cos(\theta) = \sin(\delta).\sin(\varphi) + \cos(\delta).\cos(\varphi).\cos(\omega)$$
(9)
mut du soloil

c- <u>Azimut du soleil</u>

$$\sin(\gamma_s) = \frac{\sin(\omega) \cdot \cos(\delta)}{\sin(\theta_x)} \tag{10}$$

Ainsi, moyennant ces relations, nous pourrons calculer les coordonnées du soleil, pour n'importe quelle situation géographique, sauf pour les régions tropicales, là où la valeur de la déclinaison du soleil dépasse la latitude du lieu pour l'hémisphère Nord et inférieure à la latitude du lieu pour cet hémisphère. Ce cas est bien détaillé dans [6].

Dans les formulations précédentes, nous trouvons les autres coordonnées δ et ω qui sont respectivement la déclinaison et l'angle horaire du soleil. Elles correspondent aux coordonnées du soleil dans le repère équatorial. Elles sont définies par les relations suivantes.

e- Déclinaison du soleil

$$\delta = 23,45 \sin\left[360\left(\frac{284 + nj}{365}\right)\right] \tag{11}$$

f- Angle horaire

$$\omega = 15 \left(12 - \mathrm{Tsv} \right) \tag{12}$$

Tsv est le temps solaire vrai exprimé en heure.

g- Angle d'incidence

C'est l'angle formé par la direction du rayonnement solaire direct et la normale au plan considéré, il est défini par la relation suivante:

$$cos(\theta_{i}) = sin(\delta).sin(\phi).cos(\beta) - sin(\delta).cos(\phi).sin(\beta).cos(\gamma) cos(\delta).cos(\phi).cos(\beta).cos(\omega) + cos(\delta).sin(\phi).sin(\beta).cos(\gamma).cos(\omega) (13) + cos(\delta).sin(\beta).sin(\gamma).sin(\omega)$$

Pour un capteur fixe et orienté plein sud, $\gamma = 0$, et l'expression (13) se réduit à la relation suivante:

$$\cos(\theta_{i}) = \cos(\varphi - \beta) \cdot \cos(\delta) \cdot \cos(\omega) + \sin(\varphi - \beta) \cdot \sin(\delta)$$
(14)

Dans les expressions (8-14), nj, ϕ , δ , ω sont respectivement le numéro du jour dans l'année, la latitude du lieu, la déclinaison du soleil et l'angle horaire.

 γ est l'angle formé par la projection de la normale du plan considéré et la direction de l'axe Nord-Sud du lieu considéré. L'angle prend la valeur zéro quand la surface est orientée plein Sud, positive pour une orientation vers l'Est et négative pour une orientation vers l'Ouest.

 β est l'inclinaison de la surface du plan considéré par rapport à un plan horizontal.

Ces deux derniers paramètres sont les paramètres sur lesquels nous intervenons pour augmenter la quantité d'énergie captée sans qu'il y ait une incidence significative sur le coût de l'installation. Pour ce qui de γ , l'orientation des capteurs fixes, généralement, la valeur proposée est $\gamma = 0$, qui correspond à une orientation plein Sud. C'est cette valeur qui est proposée par les scientifiques [8-10]. Ce qui fait que la surface du capteur reçoit un maximum d'énergie au voisinage de midi temps solaire vrai et que les valeurs de l'éclairement du au rayonnement direct soient maximales également. Pour ce qui est de l'inclinaison du capteur, le choix est lié à la situation géographique du site considéré et en particulier à la hauteur maximale du soleil durant la journée. Cette dernière atteint respectivement sa valeur maximale et sa valeur minimale au solstice d'été et au solstice d'hiver. Entre ces valeurs, elle suit une loi gaussienne.

Pour les applications photovoltaïques ou thermiques qui utilisent des capteurs plans, attribuer à la structure porteuse une valeur nulle pour l'inclinaison peut être bénéfique pour la période estivale et pénalisante pour la saison hivernale. Car la hauteur du soleil est remarquablement plus élevée durant l'été que l'hiver, et ainsi l'angle d'incidence sera plus important durant la période hivernale, alors la composante du rayonnement direct incident sur le plan horizontal sera moins importante. Par contre, c'est l'inverse qui va se passer si on incline la structure avec une inclinaison de 90°. Ainsi suivant l'application, pour que le système de capteurs plans reçoive le maximum d'énergie durant la période hivernale que durant la période estivale. A cet effet, pour pouvoir récupérer le maximum d'énergie au cours de l'année et pour une inclinaison fixe, plusieurs scientifiques ont proposé des méthodologies qui permettent d'optimiser la valeur de l'inclinaison des capteurs qui conduit à récupérer le maximum d'énergie. Les modèles que nous avons retenus dans ce sens sont donnés ci-après.

3. INCLINAISON OPTIMALE

Pour exprimer la valeur de l'angle optimal pour un système, plusieurs propositions de la littérature ont été étudiées et effectuées. Quelques-unes de ces propositions sont présentées ciaprès.

3.1 Angle optimum annuel

Pour une inclinaison optimale annuelle, Duffie & Beckmann [7] proposent une inclinaison égale à la latitude ϕ du lieu.

Hottel [9], suivant ses observations, a proposé une inclinaison optimale $\beta_{opt} = \phi + 20^{\circ}$ où

 ϕ est la latitude du lieu. Il a abouti à ce choix par le fait que les charges en matière de chauffage sont plus importantes durant la période hivernale et cette inclinaison conduit à orienter le capteur d'une manière à minimiser l'angle d'incidence durant cette période puisque la hauteur du soleil est plus faible. Tandis que Heywood [13] a proposé une autre relation similaire $\beta_{opt} = \phi + 10^{\circ}$.

3.1.1 Modèle de Gladius [11]

Gladius a utilisé les données relatives à quatre sites en Alabama (USA), avec lesquelles il a comparé la quantité d'énergie captée par un capteur plan sous diverses inclinaisons et a établi la relation suivante:

M. Koussa et al.

$$\beta_{\text{opt}} = \arctan\left[\frac{\sum_{i=1}^{12} \left(G_{hi} \tan\left(\varphi + \delta_{i}\right)\right)}{\sum_{i=1}^{12} G_{hi}}\right]$$
(15)

avec ϕ , δ_i et G_{hi} sont respectivement la latitude du lieu, la déclinaison du soleil pour la journée représentative du mois i et la moyenne mensuelle par jour de l'irradiation globale mesurée sur un plan horizontal.

3.1.2 Modèle de Kern et al. [12]

Dans leur modèle, Kern *et al.* ont utilisé les données relatives de cinq sites du territoire sud africain et ont développé une relation exprimant l'angle d'inclinaison optimal en fonction de la latitude du lieu, de la déclinaison du soleil et de la moyenne mensuelle journalière de l'irradiation solaire directe sur un plan horizontal. Cette expression est donnée comme suit:

$$\beta_{\text{opt}} = \arctan\left[\frac{\sum_{i=1}^{12} \left(B_{hi} \tan\left(\varphi + \delta_{i}\right)\right)}{\sum_{i=1}^{12} B_{hi}}\right]$$
(16)

avec B_{hi} étant la moyenne mensuelle journalière de l'irradiation directe sur un plan horizontal.

3.2 Angle optimum saisonnier

Plusieurs études ont été effectuées dans le sens de déterminer l'inclinaison optimale saisonnière, hivernale là où la déclinaison du soleil est négative, et estivale qui correspond à des valeurs positives de cette déclinaison. Ce qui correspondent respectivement aux deux périodes de l'année où la hauteur du soleil est basse ou élevée.

La valeur pratique de cet angle est spécifiée comme étant une fonction linéaire de la latitude du lieu qui tient compte de la situation géographique du site considéré et de la valeur moyenne de la déclinaison caractérisant la saison considérée. Ainsi, Chinnery *et al.* [12] a rajouté que pour les sites situés dans l'hémisphère Sud, $\beta_{opt} = \phi + 10^{\circ}$.

Tandis que Yellot [12] a proposé deux inclinaisons différentes et correspondantes aux deux saisons, $\beta_{opt} = (\phi + / -10^{\circ})$. Singery [12], quant à lui, proposa un angle optimal saisonnier $\beta_{opt} = (\phi + / -15^{\circ})$.

3.2.1 Modèle de El Kassaby [14]

El Kassaby a développé un modèle analytique permettant la détermination de l'angle d'inclinaison optimale en fonction de la latitude du lieu et pour n'importe période de l'année. En effet, il propose alors l'expression suivante:

$$\beta_{\text{opt}} = \frac{1}{N2 - N1 + 1} \sum_{i=N1}^{N2} \beta_{\text{opt}}(i)$$
(17)

avec N1, N2 et β_{opt} sont respectivement le premier et le dernier jour sur la période considérée et l'angle optimum journalier qui est donné par la relation suivante:

$$\beta_{\text{opt}} = \varphi - a \tan \left[\frac{\omega_{\text{s}}}{\sin(\omega_{\text{s}})} \tan(\delta) \right]$$
(18)

où ω_s est l'angle horaire du lever du soleil.

3.3 Inclinaison optimale mensuelle

El Kassaby [14] a développé un autre modèle analytique qui permet de déterminer l'angle d'inclinaison optimale en fonction de la latitude du lieu et pour n'importe quel jour de l'année. Moyennant la méthode des moindres carrées, il a développé des corrélations permettant de calculer l'angle optimal pour chacun des mois de l'année. Ces relations sont données comme suit:

Pour la période du mois de janvier au mois de mars,

$$\beta_{\text{opt}} = 60.00012 + 1.49986 \text{ Nm} + 3.49996 \text{ Nm}^2 + (\phi - 30) (0.7901 + 0.01749 \text{ Nm} + 0.0165 \text{ Nm}^2)$$
(19.a)

Pour la période du mois d'avril au mois de juin,

$$\beta_{\text{opt}} = 216.0786 - 72.032219 \text{ Nm} + 6.0031 \text{ Nm}^2 + (\phi - 40) (1.07515 + 0.11244 \text{ Nm} - 0.03749 \text{ Nm}^2)$$
(19.b)

Pour la période du mois de juillet au mois de septembre,

$$\beta_{\text{opt}} = 29.11831 - 20.5298 \text{ Nm} + 2.50186 \text{ Nm}^2 + (\phi - 50) \Big(-11.17256 + 2.70569 \text{ Nm} - 0.015035 \text{ Nm}^2 \Big)$$
(19.c)

Pour la période s'étalant entre le mois d'octobre au mois de décembre, l'expression de l'angle optimal est donnée par:

$$\beta_{\text{opt}} = -441.2385 + 84.54332 \text{ Nm} - 3.50196 \text{ Nm}^2 + (\phi - 40) (4.2137 - 0.54834 \text{ Nm} + 0.0223 \text{ Nm}^2)$$
(19.d)

Dans ces relations, Nm représente le numéro du mois.

3.3.1 Modèles de Chiou et al. [15]

Chiou *et al.* ont développé deux expressions pour déterminer l'angle optimal d'un capteur plan solaire orienté plein sud. Ce travail est spécifié pour l'utilisation du capteur en période de chauffage. Dans cette relation, Chiou *et al.* expriment l'angle d'inclinaison optimum en fonction de la latitude du lieu, du numéro du jour dans l'année, de l'irradiation directe sur un plan horizontal, de l'heure du lever du soleil, de l'irradiation globale sur plan horizontal et de l'albédo du sol. Les deux relations sont les suivantes:

$$\beta_{\text{opt}} = \operatorname{a} \operatorname{tan} \left(\mathbf{M} \cdot \left[\frac{\cos(\delta) \cdot \sin(\omega_{s}) \cdot \sin(\phi) - \left(\frac{\pi}{180} \right) \omega_{s} \cdot \cos(\phi) \cdot \sin(\delta)}{\cos(\phi) \cdot \cos(\delta) \cdot \sin(\omega_{s}) + \left(\frac{\pi}{180} \right) \omega_{s} \sin(\phi) \cdot \sin(\delta)} \right] \right)$$
(20)

$$\beta_{\text{opt}} = \tan^{-1} \left[\frac{M \cdot \tan^2(\varphi) \cdot \tan(\omega_s) + \frac{\pi}{180} \omega_s}{\tan(\varphi) \cdot \left(\tan(\omega_s) - \frac{\pi}{180} \omega_s \right)} \right]$$
(21)

avec ϕ , ω_s sont respectivement la latitude du lieu et l'angle horaire du lever du soleil calculé par la relation suivante:

$$\omega_{\rm s} = a\cos\left[-\left(tg\phi, tg\delta\right)\right] \tag{22}$$

 $\delta\,$ est la déclinaison du soleil calculé par la relation proposée par [$\,$]

$$M = \pm 2 \cdot \left(\frac{B_{h} / G_{h}}{1 + B_{h} / G_{h} - \rho} \right)$$
(23)

 B_h , G_h et ρ sont respectivement l'irradiation directe sur le plan horizontal, l'irradiation globale sur le plan horizontal et l'albédo du sol du site considéré.

Dans cette relation, le signe positif est spécifique à l'hémisphère Nord, alors que le signe négatif désigne l'hémisphère Sud.

4. SYSTEME DE POURSUITE A DEUX AXES

Afin de distinguer d'une part l'apport du choix d'un angle optimal, nous avons choisi un système de poursuite à deux axes sur lequel est monté un capteur plan. Ceci est par le fait que le système de poursuite à deux axes permet au plan d'être instantanément perpendiculaire au rayonnement solaire et de capter le maximum d'éclairement solaire.

Pour cette configuration, l'angle d'incidence θ_i est égal à 0, son azimut γ est égal à γ_s , son inclinaison β est égal à θ_z , avec γ_s et θ_z qui sont respectivement l'azimut et la distance zénithal du soleil.

4.1 Données utilisées

Les données utilisées dans ce travail sont relatives aux deux sites algériens, Bouzaréah et Ghardaïa. Sur le **tableau 1**, sont représentées les caractéristiques géographiques de ces sites.

	Tableau 1: Coordon	nées des sites utilise	és
Site	Latitude (°)	Longitude (°)	Altitude (m)
Bouzaréah	36.8	3.08	345
Ghardaïa	32.4	3.80 E	468.4

Il est à noter que 5 minutes et 60 minutes sont respectivement les pas de temps de mesure des paramètres météorologiques et radiométriques pour le site de Ghardaïa et celui de Bouzaréah. Ainsi pour chacun des sites, nous choisissons des journées claires, des journées partiellement claires et des journées couvertes. Ces journées sont relatives aux différentes saisons de l'année. Sur le tableau suivant, les journées choisies pour chacun des deux sites en fonction de l'état du ciel sont répertoriées.

Tableau 2: Journées claires, partiellement claires et couvertes sélectionnées

Bouza	aréah	Gharo	laïa
	Journées claire	es sélectionnées	
Hiver:	19 Novembre 1988	Hiver:	06 Janvier 2005
Printemps	: 30 Mars 1988	Printemps:	13 Mars 2005
Eté:	17 Juillet-1988	Eté:	06 Août 2005
Automne:	22 Octobre 1988	Automne:	30 Septembre 2005
	Journées partiellemen	t claires sélectio	onnées
Hiver:	07 Janvier 1988	Hiver:	21 Janvier 2005
	02 Novembre 1988		25 Janvier 2005
Printemps	: 01 Mars 1988	Printemps:	15 Mars 2005
			15 Avril 2005
Eté:	10 Juillet-1988	Eté:	09 Septembre 2005
Automne:	05 Septembre 1988	Automne:	08 Octobre 2005
	Journées couver	tes sélectionnée	s
Hiver:	10 Janvier 1988	Hiver:	27 Janvier 2005
	14 Janvier 1988		19 Janvier 2006
Printemps	: 10 Mai 1988	Printemps:	15 Mars 2005
-			15 Avril 2005
Eté:	30 Août 1988	Eté:	09 Septembre 2005
Automne:	05 Novembre 1988	Automne:	25 Septembre 2005

5. PRESENTATION DES RESULTATS

Nous donnons sur les **tableaux 3** et **4**, les valeurs des angles optimaux obtenues respectivement pour le site de Bouzaréah et de Ghardaïa.

Sur les figures 1 à 3 et 4 à 6, sont présentées respectivement les distributions des éclairements solaires pour les diverses configurations reconstitués, à partir des éclairements direct normal, diffus et global mesurés sur un plan horizontal.

Les **tableaux 5** à **10**, présentent les valeurs de l'indice de clarté, des irradiations journalières récupérées sur divers plans, ainsi que les valeurs du rapport des irradiations collectées sur un plan fixe par celles obtenues sur un plan muni du système de poursuite à deux axes.

5.1 Angles optimum

Pour chaque mois, sur les deux sites choisis, Ghardaïa et Bouzaréah, sont présentés les différents angles optimaux, à savoir: annuel, saisonnier et mensuel en tenant compte des expressions proposées précédemment.

Tableau 3: Angles optimaux annuel, saisonnier et mensuel proposés pour le site de Ghardaïa

						r - r	r		
	An1	An2	An3	Sais1	Sais2	Sais3	Mens1	Mens2	Mens3
Janvier	30.02	32.40	39.83	42.40	52.40	60.1	58.59	47.51	66.98
Février	30.02	32.40	39.83	42.40	52.40	60.1	48.04	39.32	79.14
Mars	30.02	32.40	39.83	42.40	52.40	60.1	32.60	27.85	46.80
Avril	30.02	32.40	39.83	22.40	12.40	9.7	14.68	13.74	16.97
Mai	30.02	32.40	39.83	22.40	12.40	9.7	1.57	1.61	0.67
Juin	30.02	32.40	39.83	22.40	12.40	9.7	0.00	0.00	0.00
Juillet	30.02	32.40	39.83	22.40	12.40	9.7	0.00	0.00	0.96
Août	30.02	32.40	39.83	22.40	12.40	9.7	9.19	8.96	10.03
Septembre	30.02	32.40	39.83	22.40	12.40	9.7	27.43	24.22	29.40
Octobre	30.02	32.40	39.83	42.40	52.40	60.1	44.59	37.01	46.70
Novembre	30.02	32.40	39.83	42.40	52.40	60.1	56.48	45.94	58.31
Décembre	30.02	32.40	39.83	42.40	52.40	60.1	61.10	49.52	62.58

Tableau 4: Angles	optimaux annuel,	saisonnier et mensuel	l proposés p	our le site de	e Bouzaréah

	An1	An2	An3	Sais1	Sais2	Sais3	Mens1	Mens2	Mens3
Janvier	33.37	36.80	46.42	46.80	56.80	63.3	62.30	52.05	70.1
Février	33.37	36.80	46.42	46.80	56.80	63.3	52.93	45.22	53.06
Mars	33.37	36.80	46.42	46.80	56.80	63.3	37.03	33.40	46.80
Avril	33.37	36.80	46.42	26.80	16.80	12.5	17.61	17.76	21.04
Mai	33.37	36.80	46.42	26.80	16.80	12.5	4.25	4.77	3.76
Juin	33.37	36.80	46.42	26.80	16.80	12.5	0.00	0.00	0.00
Juillet	33.37	36.80	46.42	26.80	16.80	12.5	0.00	0.00	2.72
Août	33.37	36.80	46.42	26.80	16.80	12.5	11.03	11.67	13.77
Septembre	33.37	36.80	46.42	26.80	16.80	12.5	28.04	26.23	33.80
Octobre	33.37	36.80	46.42	46.80	16.80	63.3	47.83	41.35	50.93
Novembre	33.37	36.80	46.42	46.80	16.80	63.3	60.17	50.53	62.18
Décembre	33.37	36.80	46.42	46.80	16.80	63.3	64.73	53.94	66.30

5.2 Distribution des éclairements solaires sur différents plans

5.2.1 Journées claires

Pour le site de Ghardaïa, pour la journée du 06/01/2005, représentative de la saison hivernale, il est présenté, sur la figure 1 (1), les distributions des éclairements dus aux rayonnements, direct mesuré sur un plan normal, diffus et global sur un plan horizontal. Tandis que sur la figure 1 (2), (3) et (4), sont présentés respectivement les distributions des éclairements globaux calculés sur les divers plans inclinés, selon les angles optimums annuels, saisonniers, mensuels, ainsi que la

distribution de l'éclairement du au rayonnement global reçu sur un plan muni du système de poursuite à deux axes. Pour ce même site, les mêmes présentations sont effectuées pour la journée du 06/8/2005 représentative de la saison estivale respectivement sur la figure 2 (1), (2), (3) et (4).

Les résultats relatifs au site de Bouzaréah sont présentés de la même manière respectivement sur la figure 3 (1), (2), (3) et (4) qui concerne la journée du 15/01/1988 représentative de la saison hivernale, ainsi que la figure 4 (1-4) pour la journée du 17/7/1988 représentant la saison estivale.

Sur les **tableaux 5** et **6**, respectifs aux sites de Ghardaïa et Bouzaréah, sont présentées les valeurs des irradiations globales journalières reçues sur les divers plans, horizontal et inclinées suivant un angle optimal retenu dont: <u>annuel</u> An1, An2, An3, <u>saisonnier</u> Sais1, Sais2, Sais3, <u>mensuel</u> mens1, mens2, mens3, selon un plan moyennant un système de poursuite à deux axes. Sur ces mêmes tableaux, sont portées également les valeurs de l'indice de clarté K_T de la journée

considérée et les valeurs de Rap, rapport entre les différentes irradiations globales calculées sur les divers plans considérés par celle calculée sur un plan muni d'un système de poursuite à deux axes.

Fig. 1: Distribution des éclairements incidents sur divers plans (J. claire 06/01/05)-Ghardaïa

Fig. 2: Distribution des éclairements incidents sur divers plans (J. claire 06/08/05)-Ghardaïa

Fig. 3: Distribution des éclairements incidents sur divers plans (J. claire 15/01/88)-Bouzaréah

Fig. 4: Distribution des éclairements incidents sur divers plans (J. claire 17/07/88)-Bouzaréah

Tableau 5: Valeurs des irradiations globales journalières G (β , γ), de l'indice de clarté K_T et le rapport Rap entre irradiations journalières reçues sur plan fixe et celles reçues sur un plan muni d'un système de poursuite à deux axes (Ghardaïa - Journées claires)

			2		1						/	
		KT	Gh	An1	An2	An3	Sais1	Sais2	Mens1	Mens2	Mens3	P2axes
06	$G(\beta,\gamma)$	0.75	3926	6490	6629	6994	7095	7352	7336	7402	7253	8861
/01 /05	Rap		0.44	0.73	0.75	0.79	0.80	0.83	0.83	0.84	0.82	
13	$G(\beta,\gamma)$	0.88	7407	8190	8163	7996	7909	7434	7727	8160	8199	8203
/03 /05	Rap		0.64	0.71	0.71	0.69	0.69	0.64	0.67	0.71	0.71	
06	$G(\beta,\gamma)$	0.78	8471	7949	7821	7347	8278	8511	8532	8536	8537	12158
/08 /05	Rap		0.70	0.65	0.64	0.60	0.68	0.70	0.70	0.70	0.70	
30	G(β,γ)	0.76	6203	7593	7623	7637	7415	6996	7583	7546	7468	7646
/09 /05	Rap		0.60	0.74	0.74	0.74	0.72	0.68	0.74	0.73	0.72	

Tableau 6: Valeurs des irradiations globales journalières G (β, γ), de l'indice de clarté K_T et du rapport Rap entre irradiations journalières reçues sur plan fixe et celles reçues sur un plan muni d'un système de poursuite à deux axes (Bouzaréah - Journées claires)

											,	
		KT	Gh	An1	An2	An3	Sais1	Sais2	Mens1	Mens2	Mens3	P2axes
19	$G(\beta,\gamma)$	0.65	3486	6352	6545	6963	6976	7200	7156	7232	7120	8779
/11 /88	Rap		0.40	0.72	0.75	0.79	0.79	0.82	0.82	0.82	0.81	
30	$G(\beta,\gamma)$	0.67	6012	7779	7826	7815	7811	7571	7811	7828	7780	10873
/03 /88	Rap		0.55	0.72	0.72	0.72	0.72	0.70	0.72	0.72	0.72	
17	$G(\beta,\gamma)$	0.74	8564	7572	7344	6580	7939	8362	8579	8564	8564	12599
/07 /88	Rap		0.68	0.60	0.58	0.52	0.63	0.66	0.68	0.68	0.68	
22	$G(\beta,\gamma)$	0.74	4625	6847	6961	7154	7158	7146	7178	7166	7076	9039
/10 /88	Rap		0.51	0.76	0.77	0.79	0.79	0.79	0.79	0.79	0.78	

5.2.2 Journées partiellement claires

Pour une raison de la mise en évidence de fluctuation que représente l'éclairement solaire, il a été choisi que des journées relatives au site de Ghardaïa, là où le pas de temps de mesure est de 5 minutes. Ainsi, il a été présenté sur la figure 5 (1), la distribution des éclairements dus au rayonnement direct mesuré sur un plan normal, diffus et global mesurés sur un plan horizontal. Sur la figure 5 (2) à (4), les distributions des différents éclairements solaires globaux reçus sur divers plans pour les deux journées choisies (25/01/2005 et 09/9/2005), représentatives de la saison hivernale et la saison estivale.

Fig. 5: Distribution des éclairements incidents sur divers plans (J. part. claire 25/01/05)-Ghardaïa

Fig. 6: Distribution des éclairements incidents sur divers plans (J. part. claire 09/09/05)-Ghardaïa

Alors, pour chacune des journées retenues dans cette étude, sont présentés sur les **Tableaux 7** et **8**, les mêmes paramètres que ceux indiqués sur les **Tableaux 5** et **6**.

Tableau 7: Valeurs des irradiations globales journalières G (β, γ), de l'indice de clarté K_T et du rapport Rap entre irradiations journalières reçues sur plan fixe et celles reçues sur un plan muni d'un système de poursuite à deux axes (Ghardaïa - Journées particulièrement claires)

	india d'un systeme de poursaite à deux ares (Ghardana - Sournees particulierement charles)											
		KT	Gh	An1	An2	An3	Sais1	Sais2	Mens1	Mens2	Mens3	P2axes
20	$G(\beta,\gamma)$	0.64	3591	4193	4229	4300	4311	4282	4044	4209	4310	4661
/01 /05	Rap		0.77	0.90	0.91	0.92	0.92	0.92	0.87	0.90	0.92	
25	$G(\beta,\gamma)$	0.63	3655	4439	4478	4559	4572	4549	4308	4476	4575	5192
/01 /05	Rap		0.70	0.85	0.86	0.88	0.88	0.88	0.83	0.86	0.88	
15	$G(\beta,\gamma)$	0.51	4255	4006	3968	3828	3772	3517	3666	3965	4037	3688
/03 /05	Rap		1.15	1.09	1.08	1.04	1.02	0.95	0.99	1.08	1.09	
15	G(β,γ)	0.54	5461	5188	5136	4941	5318	5403	5377	5393	5397	5269
/04 /05	Rap		1.04	0.98	0.97	0.94	1.01	1.03	1.02	1.02	1.02	
09	$G(\beta,\gamma)$	0.56	5213	5739	5748	5722	5694	5496	5626	5663	5741	6189
/09 /05	Rap		0.84	0.93	0.93	0.92	0.92	0.89	0.91	0.92	0.93	
08	$G(\beta,\gamma)$	0.60	4644	4509	4470	4316	4604	4650	4519	4547	4586	4753
/10 /05	Rap		0.98	0.95	0.94	0.91	0.97	0.98	0.95	0.96	0.96	

Tableau 8: Valeurs des irradiations globales journalières G (β , γ), de l'indice de clarté K_T et du rapport Rap entre irradiations journalières reçues sur plan fixe et celles reçues sur un plan muni d'un système de poursuite à deux axes (Bouzaréah - Journées particulièrement claires)

		KT	Gh	An1	An2	An3	Sais1	Sais2	Mens1	Mens2	Mens3	P2axes
07	$G(\beta,\gamma)$	0.32	1428	1860	1872	1896	1896	1884	1776	1848	1896	1932
/01 /88	Rap		0.74	0.96	0.97	0.98	0.98	0.97	0.92	0.95	0.98	
07	$G(\beta,\gamma)$	0.27	1882	2135	2129	2082	2079	1983	2079	2128	2135	2220
/01 /88	Rap		0.85	0.96	0.96	0.94	0.94	0.89	0.94	0.96	0.96	
05	$G(\beta,\gamma)$	0.47	4293	3636	3588	3412	3702	3738	3630	3692	3706	3931
/09 /88	Rap		1.09	0.92	0.91	0.87	0.94	0.95	0.92	0.94	0.94	
02	$G(\beta,\gamma)$	0.44	2568	2811	2830	2839	2838	2775	2713	2738	2823	3124
/11 /88	Rap		0.82	0.90	0.91	0.91	0.91	0.89	0.87	0.88	0.90	

5.2.3 Journées couvertes

Pour ce type de journées, bien qu'il n'y a que la présence de l'éclairement du au rayonnement diffus, les fluctuations relatives à la distribution de ce dernier n'est pas apparente pour n'importe quel pas de temps. Pour ceci, deux journées ont été retenues, représentatives pour chacun des sites, à savoir: le 25/01/2005 et le 19/01/2006 (Ghardaïa), le 10/01/1988 et le 30/09/1988 (Bouzaréah). Ainsi les résultats obtenus sont présentés de la même manière, les figures 7 et 8 pour Ghardaïa, les figures 9 et 10 pour Bouzaréah.

Il est aussi représenté, sur les **Tableaux 9** et **10**, les valeurs des différentes irradiations globales journalières calculées sur les divers plans, les valeurs de l'indice de clarté et celles du rapport Rap.

Fig. 7: Distribution des éclairements incidents sur divers plans (j. couverte 27/01/05)-Ghardaïa

Fig. 8: Distribution des éclairements incidents sur divers plans (j. couverte 19/01/06)-Ghardaïa

Fig. 9: Distribution des éclairements incidents sur divers plans (j. couverte 10/01/88)-Bouzaréah

Fig. 10: Distribution des éclairements incidents sur divers plans (j. couverte 30/08/88)-Bouzaréah

Tableau 9: Valeurs des irradiations globales journalières G (β, γ), de l'indice de clarté K_T et du rapport Rap entre irradiations journalières reçues sur plan fixe et celles reçues sur un plan muni d'un système de poursuite à deux axes (Ghardaïa - Journées couvertes)

			-	-								
		KT	Gh	An1	An2	An3	Sais1	Sais2	Mens1	Mens2	Mens3	P2axes
27	$G(\beta,\gamma)$	0.26	1534	1420	1405	1351	1330	1237	1074	1171	1285	1187
/01 /05	Rap		1.29	1.20	1.18	1.14	1.12	1.04	0.90	0.99	1.08	
19	$G(\beta,\gamma)$	0.092	506	473	467	449	441	409	354	387	426	390
/01 /06	Rap		1.30	1.21	1.20	1.15	1.13	1.05	0.91	0.99	1.09	

Tableau 10: Valeurs des irradiations globales journalières G (β , γ), de l'indice de clarté K_T et du rapport Rap entre irradiations journalières reçues sur plan fixe et celles reçues sur un plan muni d'un système de poursuite à deux axes (Bouzaréah - Journées couvertes)

		K _T	G _h	An1	An2	An3	Sais1	Sais2	Mens1	Mens2	Mens3	P2axes
10	$G(\beta,\gamma)$	0.14	6477	529	521	493	492	455	395	432	473	416
/01 /88	Rap		1.56	1.27	1.25	1.19	1.18	1.09	0.95	1.04	1.14	

Validation de quelques modèles de reconstitution des éclairements dus au rayonnement... 533

14	$G(\beta,\gamma)$	0.18	838	734	721	679	677	624	538	591	650	576
/01 /88	Rap		1.45	1.27	1.25	1.18	1.17	1.08	0.93	1.03	1.13	
10	$G(\beta,\gamma)$	0.06	647	529	520	488	546	564	576	576	576	524
/05 /88	Rap		1.23	1.01	0.99	0.93	1.04	1.08	1.10	1.10	1.10	
30	$G(\beta,\gamma)$	0.12	1394	1176	1155	1084	1212	1253	1261	1267	1266	1107
/05 /88	Rap		1.26	1.06	1.04	0.98	1.10	1.13	1.14	1.15	1.14	
05	$G(\beta,\gamma)$	0.11	625	553	543	511	510	470	446	455	496	462
/11 /88	Rap		1.35	1.20	1.18	1.11	1.10	1.02	0.96	0.98	1.07	

6. DISCUSSION DES RESULTATS

6.1 Journées claires

Pour un état de ciel clair, la distribution des différentes composantes du rayonnement solaire suit une loi gaussienne, (Fig. 1 à Fig. 4). Du point de vue quantitatif, il est à constater que l'éclairement solaire incident reçu sur les divers plans orientés plein sud et dont l'inclinaison est égale aux différents angles optimaux, est nettement plus importante que celle reçue sur un plan horizontal durant le matin et l'après midi en particulier au voisinage du lever et du coucher du soleil.

Par contre, au voisinage de midi temps solaire vrai, nous constatons que l'éclairement solaire reçu sur les divers plans est nettement supérieur que celui incident reçu sur un plan horizontal, les journées appartenant à la période hivernale (Fig. 1 et Fig. 3), alors cette quantité est quasiment identique sur les divers plans. Ceci s'explique par le fait que la hauteur du solaire est relativement faible durant cette période hivernale et qu'elle devient importante durant la période estivale. Ce qui conduit à ce que les capteurs inclinés et orientés vers le sud ont un angle d'incidence plus faible par rapport à celui d'un plan horizontal, ainsi l'éclairement du au rayonnement direct est plus important.

Par contre, durant la période estivale, (Fig. 2 et Fig. 4), les valeurs de la hauteur du soleil sont importants et atteignent leur valeur maximale au solstice d'été. Ainsi, l'éclairement solaire incident reçu sur le plan horizontal devient aussi considérable que celui qui est reçu sur les autres plans. Par ailleurs, bien que l'optimisation de l'angle d'inclinaison des capteurs plans ait été effectuée dans le sens d'augmenter la quantité d'énergie reçue sur ces plans, en particulier au voisinage de midi temps solaire vrai. Celle-ci reste faible devant celle reçue par le même capteur qui est muni d'un système de poursuite à deux axes.

A celle-ci, vient se rajouter la quantité d'énergie incidente sur ce plan qui est plus importante au voisinage du lever et du coucher du soleil en particulier durant la période estivale, là où la durée du jour est importante et ce qui correspond aux angles de lever et du coucher du soleil. Des derniers sont inclus respectivement dans les cadrans Nord-Est et Nord-Ouest.

Si nous observons les **Tableaux 5** et **6**, nous constatons que la quantité d'énergie récupérée par un capteur muni d'un système de poursuite est de 20 % à 35 % supérieure à celle récupérée par les capteurs fixes et de 30 % à 60 % par rapport à celle récupérée par un capteur plan.

6.2 Journées couvertes

Pour les journées complètement couvertes, là ou il y a absence total de l'éclairement du au rayonnement direct (Fig. 7 à Fig. 10), nous constatons que cette fois ci que toutes les courbes de distribution des éclairements globaux sont quasiment superposées et que les valeurs de l'éclairement du au rayonnement global incident sur un plan horizontal sont relativement plus importantes le long de la journée par rapport au autres plans. Ce qui d'ailleurs apparaît sur les courbes relatives au site de Bouzaréah.

Du point de vue valeurs, si nous observons les **Tableaux 9** et **10**, nous constatons les valeurs de l'irradiation globale journalière récupérée sur un plan horizontal sont de 20 % à 55 %

supérieures par rapport à celle récupérée par un plan muni d'un système de poursuite, de 0 à 27 % pour les plans ayant une inclinaison annuelle fixe, de 2 % à 18 % pour les plans ayant une inclinaison variable selon les deux saisons de l'année, de 0 à 15 % pour les plans dont l'inclinaison est variable selon le mois. Ce qui s'explique par le fait que durant les journées couvertes, il y a absence totale de l'éclairement du au rayonnement direct, la seule composante qui reste est l'éclairement du au rayonnement diffus.

Dans ce cas d'état de ciel, la distribution de l'éclairement du au rayonnement diffus est isotrope. Ainsi pour reconstituer la composante diffuse sur un plan incliné revient à multiplier la composante horizontale par un facteur de forme $(1 + \cos(\beta))/2$ qui égale à l'unité pour un plan horizontal et qui devient faible pour des valeurs de β important. C'est ce qui apparaît sur les **Tableaux 5** et 6 sur lesquels sont portées les valeurs des angles optimaux retenus.

6.3 Journées partiellement claires

Bien qu'une journée claire est caractérisée par un état de ciel transparent sans que qu'il soit perturbé par des passages nuageux. Par contre une journée est dite complètement couverte si durant la période du lever au coucher du soleil il y a eu absence total du disque solaire. Ainsi à travers toutes ces considérations, on définit la journée dite partiellement claire. C'est une journée caractérisée par un état de ciel dans lequel il y a quelques passages nuageux. Ainsi la quantité d'énergie incidente sur la surface considérée dépend fortement de la fréquence de passages nuageux ou d'obstacle couvrant le disque solaire.

Dans la littérature et à travers les corrélations établies entre les différentes composantes du rayonnement solaire, surtout celles qui expriment la proportion du diffus en fonction de l'indice de clarté. Nous donnons sur le **Tableau 11**, un aperçu sur ce qui a été proposé par quelques auteurs, les limites d'une journée partiellement claire en fonction de cet indice de clarté.

Nous constatons alors que chacun des auteurs a limité les journées claires suivant les données utilisées donnant les caractéristiques climatiques du site considéré. Les valeurs de l'indice de clarté limitant une journée partiellement claire d'une journée couverte varient en 0,12 et 0,35 et celles limitant une journée partiellement claire d'une journée couverte varient entre 0,7 à 0,80.

Auteur	Limite de l'indice de clarté
Liu & Jordan [6]	$0.30 < K_T < 0.70$
D.G. Kerbs et al. [16]	$0.3 \leq K_T \leq 0.8$
Collares-Pereira et al. [17]	$0.17 < K_T < 0.80$
Orgill et al. [18]	$0.35 < K_T < 0.75$
A. Zeroual [19]	$0.12 < K_T < 0.78$
Al Riahi [20]	$0.25 < K_T < 0.7$
Lalas <i>et al.</i> [21]	$0.28 < K_T < 0.8$

Tableau 11: Plage de l'indice de clarté limitant une journée claire

Pour ce type de journées, si nous observons les figures 5 et 6, nous constatons que l'aspect de distribution gaussien n'est plus respecté et il y a fluctuation des valeurs des différents éclairements qui sont directement liées aux fréquences de passage nuageux. L'analyse des résultats, revient alors à combiner les commentaires évoqués dans les deux parties précédentes. Ainsi, pour un instant donné de la journée, les mêmes commentaires dans les parties 6.2 ou 6.3 sont maintenues dans le cas de présence ou d'absence de l'éclairement du au rayonnement direct.

Du point de vue quantitatif, si nous observons les **Tableaux** 7 et **8** relatifs aux sites de Ghardaïa et de Bouzaréah, nous constatons que les valeurs des irradiations journalières, la quantité d'énergie récupérée par chacun des plans, dépend fortement de l'indice de clarté journalier.

534

Pour les valeurs de l'indice clarté inférieures à 0.5, le rapport des irradiations journalières récupérées sur les plan orienté plein sud et dont l'inclinaison est égale aux différents angles optimum par celles récupérées sur un plan muni d'un système de poursuite sont proche de l'unité, c'est le cas des journées caractérisées par un état de ciel quasi couvert. Ce dernier n'atteint les 9% qu'à partir des indices de clarté supérieurs à 0.6, c'est le cas de journées quasi claires.

Par contre, si nous observons le rapport de l'irradiation journalière récupérée sur un plan horizontal, pour les valeurs de $K_T < 0.5$, ce rapport est supérieur à l'unité ce qui indique que l'irradiation journalière récupérée sur un plan horizontal est supérieure à celle récupérée sur une surface munie d'un système de poursuite. Ce rapport n'est inférieur à l'unité que pour les valeurs de l'indice de clarté supérieures à 0.51.

7. CONCLUSION

D'après les résultats obtenus, l'intérêt de la poursuite n'apparaît que pour un état de ciel complètement clair. Ainsi, l'utilisation d'un tel mécanisme de poursuite permet donc, selon la saison et le site considéré, de récupérer en moyenne 30 % d'énergie supplémentaire par rapport aux systèmes fixes, inclinés suivant un angle optimal et orienté plein sud. Ce qui nous permet également de récupérer en moyenne 40 % d'énergie supplémentaire par rapport à un plan horizontal, particulièrement en période hivernale là où la hauteur du soleil est faible.

Par contre, les résultats montrent que pour les journées complètement couvertes, il est préférable d'installer les capteurs sur un plan horizontal, car ce qui équivaudrait récupérer sur ce dernier, en moyenne 40 % d'énergie supplémentaire, par rapport à celles reçues sur celui muni d'un mécanisme de poursuite à deux axes.

Par ailleurs, pour les journées caractérisées par un état de ciel partiellement clair, l'utilisation du mécanisme de poursuite à deux axes ne peut être intéressante que pour les cas où l'indice de clarté est supérieur à 0.6.

Ainsi, dans un cas pratique avant de prendre une décision d'introduire le mécanisme de poursuite, il est très important d'établir une étude statistique à long terme et à travers laquelle on détermine le nombre de jours durant lesquels l'utilisation de tel système devient intéressante et bénéfique.

REMERCIEMENTS

Nous tenons à remercier les responsables de l'Unité de Recherche Appliquée des Energies Renouvelables de Ghardaïa et le personnel qui s'occupe de la collecte et du traitement des données météorologiques et radio métriques de ce site, ainsi que celui du site de Bouzaréah pour avoir mis en notre disposition les données qui sont utilisées dans notre travail.

NOMENCLATURE

An	Angle optimal annuel
B_h	Eclairement direct reçu sur un plan horizontal
B _n	Eclairement direct reçu sur un plan normal
$B(\beta,\gamma)$	Eclairement direct reçu sur un plan incliné
$R(\beta,\gamma)$	Eclairement réfléchi par le sol et reçu sur un plan incliné
D _h	Eclairement diffus reçu sur un plan horizontal
$D(\beta,\gamma)$	Eclairement diffus reçu sur un plan incliné
G _h	Eclairement global reçu sur un plan horizontal
$G(\beta,\gamma)$	Eclairement global reçu sur un plan incliné
Mens	Angle optimal mensuel

- Angle optimal saisonnier Sais
- Facteur de forme R_b
- Tsv Temps solaire vrai
- Hauteur du soleil h
- Indice de clarté $\mathbf{K}_{\mathbf{T}}$
- Numéro du jour dans l'année n i

Symboles

ω	Angle horaire	ω_{s}	Angle horaire du lever du soleil
β	Angle d'inclinaison	φ	Latitude du site
β_{opt}	Angle d'inclinaison optimal	ρ	Albédo du
δ	Déclinaison	θ_{i}	Angle d'incidence
γ	Azimut du plan	θ_z	Distance zénithale

 γ_s

- Azimut du soleil
- REFERENCES
- [1] R. Perez, R. Stewart, C. Arbogast, R. Seals and J. Scott, 'An Anisotropic Hourly Diffuse Model for Sloping Surfaces: Description, Performance Validation, Site Dependency Evaluation', Solar Energy, Vol. 36, N°6, pp. 481 – 497, 1986.
- [2] Mukesh Chander, K.L. Chopra, J.C. Joshi and A.K. Mukerjee, 'Comparative Study of Different Orientation of Photovoltaic System', Solar and Wind Technology, Vol. 5. N°3, pp. 329-334, 1988.
- [3] P. Baltas, M. Tortoreli and P.E. Russell, 'Evaluation of Power Output for Fixed and Step Tracking Photovoltaic Arrays', Solar Energy, Vol. 32, N°2, pp. 147 – 163, 1986.
- [4] R.C. Temps and K.L. Coulson, 'Solar Radiation Incident upon Slopes of Different Orientations'. Solar Energy, Vol. 19, N°2, pp. 179 – 184, 1977
- [5] T.M. Klucher, 'Evaluation of Models to Predict Insolation on Tilted Surface', Solar Energy, Vol. 23, N°2, pp. 111 - 114, 1979.
- [6] B.Y.H. Liu and R.C. Jordan, 'Interrelationship and Characteristics Distribution of Direct, Diffuse and Total Solar Radiation', Solar Energy, Vol. 4, N°3, pp. 1 – 19, 1960.
- [7] J.A Duffie and W.A. Beckmann, 'Solar Engineering of Thermal Process', Second Edition, New York, John Wiley, 1991.
- [8] J.E. Braun and J.C. Mitchell, 'Solar Geometry for Fixed and Tracking Surfaces', Solar Energy, Vol. 31, N°5, pp. 439 - 444, 1983.
- [9] H.C. Hottel, 'Performance of Flat Solar Energy Collectors in Space Heating', P. Course Symposium, M.I.T. Press, Cambridge, 1954.
- [10] H. Heywood, 'Operating Experience with Solar Water Heating', Journal of the Industrial Heat Ventilation Engineering, Vol. 39, pp. 63-69, 1971.
- [11] G. Lewis, 'Optimum sizing on a Collector for a Domestic Water Heating System', Solar and Wind Technology, Vol. 4, N°3, pp. 411 - 414, 1987.
- [12] P. Kern and I. Harris, 'On the Optimum Tilt of Solar Collector', Solar Energy, Vol. 17, N°2, pp. 92 -112, 1975.
- [13] H.J. Yellot, 'Utilization of Sun and Sky Radiation for Heating and Cooling of Building', Ashrea, N°19, 1973.
- [14] M.M. Kassaby, 'Monthly and Daily Optimum Tilt Angle for South Facing Solar Collectors, Theoretical Model, Experimental and Empirical Correlations', Solar and Wind Technology, Vol. 5, N°6, pp. 589 -596, 1988.

- [15] J.P. Chiou and M.M. El-Naggar, 'Optimum Slope for Solar Insolation on Flat Surface Tilted Toward the Equator in Heating Season', Solar Energy Vol. 36, N°5, pp. 471 − 478, 1986.
- [16] D.G. Kerbs, S.A. Klein and J.A. Duffie, 'Estimation of the Diffuse Radiation Fraction for Hourly, Daily and Monthly-Average Global Radiation', Solar Energy, Vol. 28, N°4, pp. 293 – 302, 1982.
- [17] M. Collares-Pereira and A. Rabl, 'The Average Distribution of Solar Radiation Correlations between Diffuse and Hemispherical and between Daily and Hourly Insolation Values', Solar Energy, Vol. 22, N°2, pp 155 – 164, 1978.
- [18] J.F. Orgill and K.G.T. Hollands, 'Correlation Equation for Hourly Diffuse Radiation on a Horizontal Surface', Solar Energy, Vol. 19, N°4, pp. 357 – 359, 1977.
- [19] A. Zeroual, M. Ankrim and A.J. Wilkinson, 'The Diffuse-Global Correlation: Its Application to Estimating Solar Radiation on Tilted Surfaces in Marrakesh, Morocco', Renewable Energy, Vol. 7, N°1, pp. 1–13, 1996.
- [20] M. Al-Riahi, N. Al-Hamdani and K. Tahir, 'An Empirical Method for Estimation of Hourly Diffuse Fraction of Global Radiation', Renewable Energy, Vol. 2, N°4-5, pp. 451 – 456, 1992.
- [21] J.W. Spencer, 'A Comparison of Methods for Estimating Hourly Diffuse Solar Radiation from Global Solar Radiation', Solar Energy, Vol. 29, N°1, pp. 19 – 32, 1982.