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Abstract - In  this  paper,  we  develop  a  mathematical model,  which  calculate  the  temperature  and 
thermal contact resistance distributions in a multilayer media. This work is composed of two parts.
The  first  part  concerns  the  analytical  solution  of  the  conduction  thermal  problem  for  two  plates,
which ended in mathematical expressions giving the temperatures and thermal resistance profiles. A 
computer code, which calculates the analytical expressions from the values of the temperature at any
time as well as the thermal contact résistance, is elaborated in the second part.
Résumé – Dans cet article, nous développons un modèle mathématique, qui calcule la température
et les distributions des résistances de contact thermiques dans des milieux multicouche. Ce travail se 
compose de deux parties. La première partie concerne la solution analytique du problème thermique
de  conduction  pour  deux  plans,  qui  se  terminent  en  expressions  mathématiques  donnant  les 
températures et les profils des résistances thermiques. Un code machine, qui calcule les expressions 
analytiques  des  valeurs  de  la  température  à  tout moment  aussi  bien  que  le  résistance  de  contact 
thermique, est élaboré dans la deuxième partie.
Keywords:  Temperature  -  Thermal  contact  resistance  -  Thermal  conduction  -  Transient  state  -

  Multilayer media.

1. INTRODUCTION
  The problems of one-dimensional, heat transfer in a plate have numerous applications: heat 

removal from a plate heat exchanger element of a thermal installation by the coolant fluid, heat 
dissipation from a current-carrying plate, etc. In the case of multilayer media, the conduction heat 
transfer  takes  place  through  two  layers,  having different  thermal  conductivity,  and  with  perfect 
thermal  contact  between  these  layers  (Fig.  1). Unfortunately,  this  thermal  contact  is  not,  in 
general, perfect.

  Several experimental and theoretical works have reported in the literature on the prediction of 
thermal contact résistance [1-5]. For example, in the work of Yeh et al. [1], an experimental study 
of  thermal  contact  conductance  was  conducted with  pairs  of  aluminium  alloy  (6061-T6)
specimens  jointed  by  bolts.  Results  show  that  the interfacial  contact  pressure  increases  with  an 
increase of either the applied torque or the number of bolts. An experimental investigation was 
carried out to study the behaviour of thermal contact resistance (TCR) at the interface of metallic 
double tubes with respect to governing parameters by Bourouga and Bardon [2]. The results show 
that, on a set of samples of the similar kind, the TCR presents a minimum value with increasing 
assembly  pressure  and  temperature  level.  Monte  [3]  investigated  the  transient  heat  conduction 
problems  in  one-dimensional  multi-layer  solids  are  usually  solved  applying  conventional 
techniques,  based  on  Vodicka’s  approach  and the  separation-of-variables  method.  Zhou  [4]
obtained an analytical solution for transient heat conduction in hollow cylinders containing well-
stirred fluid with uniform heat sink. A two-dimensional (axisymmetric) transient heat conduction 
in  components  computer  program  (HCC)  was  successfully  developed  for  predicting  engine
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combustion chamber wall temperatures, by Liu and Reitz [5]. The alternating direction explicit 
(ADE) Saul’yev method was used in their code. 

Our approach appears rather simple to the means used, since it is necessary to make submit 
one of the faces an impulse of heat and to measure the temperature of the other face. The value of 
the thermal contact resistance is obtained from a computer code developed here, based on an 
analytical calculation, by comparing between the measured and calculated temperature. 

2. PROBLEM FORMULATION 
Consider two plates as illustrated in Fig. l. The plates dimensions are sufficiently are 

supposed very large to the thickness, in order to ensure only the temperature gradient in the 
thickness direction x. Therefore, we can take: ‘a’, for the first plate, and ‘b’, for the second plate, 
‘a’ and ‘b’ are the thickness of the first and the second plate respectively. These thicknesses are 
very small than other dimensions of the plates (Fig. l). 

 
Fig.1: Cross-section of two plates 

We subject at 0x = , an impulse of heat, type-flash, which will heat a small portion of the 
thickness ε  of the first layer [6]. 

3. MATHEMATICAL EQUATIONS 

The temperatures distributions ( )xT1  and ( )xT2  in the first and second plate respectively, 
are governed by the following heat conduction equations: 
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and the initial conditions, at 0t = : 
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In order to obtain the analytic solution of each equation (1) and (2), we use the solution by 
separation of variables [6-8]: 

( ) ( ) ( )t.xt,xT 111 ΓΨ=                  (9) 

and 
( ) ( ) ( )t.xt,xT 222 ΓΨ=                (10) 

Where ( )x1Ψ , ( )x2Ψ , ( )t1Γ  and ( )t2Γ  are four unknown functions. By substituting 
equations (9) and (10) into equations (1) and (2), respectively, we obtain: 















α

β
+

α

β
= β−

1

n
n1

1

n
n1

t
1

xcosBxsinAeT
2
n              (11) 

( ) 













α

β
+

α

β
= β−

2

n
n2

2

n
n2

t
2

xcosBxsinAet,xT
2
n             (12) 

While applying the boundary conditions, we have to solve the following system: 
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We have now the following system: 
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which contains four equations with five unknown coefficients: n1A , n1B , n2A , n2B  and nβ . 
The solution of this system (14) consists to take 1B n1 = , and to determine the others coefficients. 
Thus, the system of equations (13) to solve is now 
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To determine n2A  and n2B , we will only take two equations. We will have to solve the 
following system: 
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We are going to use the determinant method: 
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In order to know the nβ  arguments, we must cancel the determinant of the equation (16), 
which cannot be solved analytically. For that, we have used the numerical method, namely, 
bisection method, in order to calculate nβ  [9]. By knowing the nβ , we can easy deduce the 
coefficients inA  and inB , i.e., the temperatures distributions. 
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What comes back to solve the next equation: 
( ) ( ) 0s.ss.s.ss.ss.s.sF 6231536214c =−−−=             (19) 

In our case we have to calculate infinities of solutions, then the initial value is of a primordial 
importance. 

4. PREDICTION OF TEMPERATURES 
The temperatures distributions in the first plate are given by the equation (1), which must 

satisfy the initial conditions (7) and (8). 
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Where M  is the number of walls (in our case, M  = 2), and ix  is the position of the wall in 
the selected reference. 
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The orthogonality and nN  expressions are defined, respectively, as follows: 
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By substituting equation (23) into equation (22), we obtain: 
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Finally, the temperatures expressions is now 
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We applies the initial conditions (7) and (8) to the above expression, we will have: 
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By setting carries out the solution of the equation (26): 
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5. PRÉDICTION OF THE THERMAL CONTACT RÉSISTANCE 
In this section, we can compute the thermal contact resistance by knowing the following 

temperatures: ( ) 11 Tt,T =ε  and ( ) 22 Tt,baT =+ , which are deduced from equations (27) and 
(28), respectively. 

By knowing that: 
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Our computer code in Fortran language, which permits to compute the temperatures of both 
faces of composite plate, and the thermal contact resistance, if the extern temperature is measured. 
For more detail, see the flow chart illustrated in Fig. 2. 

 
Fig. 2: Flow chart of the computational programme 
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6. RESULTS AND DISCUSSION 
The temperatures distributions obtained from the analytic expressions are represented in the 

figures 3 and 4, for the both plates, respectively. Note that the first and second plates are 
composed by the aluminium and copper. We can see from these figures, that the temperature 

( )t,T1 ε  decreases from 175 °C at t = 0.1 s , to 25 °C at t = 10 mn. After, the steady state is 
reaches after long lime, which is about 20 °C (Fig. 3). On the other hand, the temperature 

( )t,baT2 +  increases from 20 °C until reaching a maximum value of 25 °C at t = 10 mn, then it 
decrease to reach the temperature limiting of 20 °C at t = 3.5 h (Fig. 4). 

 
Fig. 3: Temperature of the first plate via the time, for two plates. The first and second 

plates are composed of aluminium and copper, respectively. Here, a = 0.1 m, b = 0.05 m 

 
Fig. 4: Temperature of the second plate via the time, for two plates. The first and second 
plates are composed of aluminium and copper, respectively. Here, a = 0.1 m, b = 0.05 m. 

Figure 5 shows the distribution of thermal resistances via the thermal conductivity λ  of the 
second plate. We can see from this figure, that the thermal resistances decrease, and have a very 
small values for high values of λ . 
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Fig. 5: Thermal resistances variation via the thermal conductivity of the second plate. 

Here, the initial temperature is maintained at 860 °C. 

Figure 6 shows the distribution of thermal contact resistance via the heat transfer coefficient. 
We can sec also from this figure, that the thermal résistance decreases, and has a very small 
values for high values of heat transfer coefficient. 

 
Fig. 6: Thermal resistances variation via the heat transfer coefficient. The first and second 
plate arc composed of aluminium and copper, respectively. Here, a = 0.05 m, b = 0.05 m. 

The initial temperature is maintained at 860 °C. 

7. CONCLUSION 
In this study, we have obtained analytically the temperatures expressions from the heat 

conduction equation for a plate with multi-layer by the method of separation-of-variables. The 
phenomenon of the thermal contact resistance remains one of the most complicated phenomena in 
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heat transfer problems, and so far, it is not modelled. Thus is why, we hope that our work will be 
a first step to develop the experimental process and thus to arrive, perhaps, to understand the 
parameters which influence this phenomenon. 

NOMENCLATURE 

niA  Constant niB  Constant 
a  Thickness of the first plate (m) b  Thickness of the second plate (m) 
cos  Cosinus e  Exponential function  

pC  Specific heat G  Function 

nC  Constant H  Constant 
h  Convective heat transfer coefficient K  Constant 
N  Norm n  Integer number 
Q  Heat quantity (W) R  Thermal contact résistance 
s in Sinus w  Constant 
T  Temperature (°C) x  Coordinate (m) 
t  Time (s)  Symbols greeks 
α  Thermal diffusivity (m2/s) β  Constant of integration 
λ  Thermal conductivity (w ε  Low thick (m) 
ρ  Density (kg/m3) Γ  Time function* 
Ψ  Space function  Indices 
c Contact 1  First wall 
M Numbers of walls  2 Second wall 
m Measured   
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