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Abstract - In this paper, we report on the simulation of steady state photoconductivity in un-doped a-
Si:H at temperatures from 30 to 500 K. The model is based on recombination at dangling bond states
and band tail states. It takes also into account the hopping transitions in the conduction hand tail 
states to describe the conduction in localized states at low temperatures. At high temperatures, the 
multiple trapping process is considered to describe the conduction in extended states. The density of 
states includes the exponential density of conduction band tail states and valence band tail slates and
the density of dangling bond states. This later is determined by the Defect Pool Model ‘DPM’. The
experimental features observed on the temperature dependence of the photoconductivity ( σp ) are 
generally  the  thermal  quenching,  the  low  activated  region  and  the  temperature  independent 
photoconductivity at very low temperatures. All these observations are well reproduced by the model
in un-doped a-Si:H. By the examination of the relative contributions of two processes of conduction:
(i) the multiple trapping and (ii) the multiple trapping associated with the hopping, the model results 
show that the multiple trapping process of electrons where the conduction is assured by free carriers
in the thermal quenching region above 140 K is important while the hopping process of electrons is 
negligible. At 140 K and below, the hopping transport of electrons in the conduction band tail states 
makes an important contribution in the photoconductivity. It explains successfully the low activated 
region and the temperature independent photoconductivity at very low temperatures.
Résumé - Ce  travail  est  une  étude  par  simulation  numérique  de  la  dépendance  de  la 
photoconductivité en régime stationnaire de la température du a-Si:H intrinsèque dans un intervalle
de température [30 K - 500 K]. Le modèle est basé sur la recombinaison dans les états des liaisons 
pendantes et les états de queues de bandes. Il prend aussi en considération les transitions par saut
dans les états de queue de bande de conduction pour décrire la conduction dans les états localisés
aux  températures  basses.  Aux  températures  élevées, le  processus  de  multi  piégeage  est  considéré
pour décrire la conduction dans 1es états étendus. La densité des états inclut 1a densité des états de 
queue  de  bande  de  conduction  et  de  valence  de  formes  exponentielles  et  la  densité  des  états  des 
liaisons pendantes. Cette dernière est déterminée par le Modèle Defect Pool ‘MDP’ de formation des 
défauts.  Les  caractéristiques  généralement  observées  sur  la  dépendance  en  température  de  la
photoconductivité ( σp ) sont le thermal quenching, la région thermiquement activée par une faible 
énergie et la photoconductivité indépendante de la température aux températures très basses. Toutes
ces observations sont bien reproduites par le modèle dans le a-Si:H intrinsèque. Par l’examination
des  contributions  relatives  de  deux processus  de  conduction:  (i)  le multi  piégeage  et  (ii)  le  multi 
piégeage associé au processus par saut, les résultats du modèle montrent que le processus de multi 
piégeage  d’électrons  où  la  conduction  qui  est  assurée  par  les  porteurs  libres  dans  la  région  du 
thermal quenching est prédominant, cependant, le processus de conduction par saut est négligeable à

  T > 140 K .  A T ≤ 140 K ,  le  transport par  saut d’électrons  dans  les  états de  queue  de  bande  de 
conduction  a  une  contribution  importante  dans  la photoconductivité.  Il  explique  avec  succès  la
région faiblement activée et la photoconductivité indépendante de la température aux températures
très basses.
Keywords:  Silicium  amorphe  hydrogéné  ‘a-Si:H’  - Steady  state  photoconductivity  -  Hopping  -

  Density of states ‘DOS’.
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1. INTRODUCTION 
The study of the temperature dependence of the a-Si:H photoconductivity determines the 

different transport mechanisms, conduction at extended states and conduction by hopping through 
localized band tail states. The temperature dependence of the photoconductivity appears to have 
four regions [1-5]; the very low temperature region where the photoconductivity is nearly 
constant, the low and intermediate temperature region where the photoconductivity rises with 
temperature by several orders of magnitude, the high temperature region where the 
photoconductivity decreases with increasing temperature known as thermal quenching and finally, 
the higher temperature region where the photoconductivity increases rapidly with temperature. 

Many models have been developed to explain the observed features of the photoconductivity 
in a-Si:H [6-9]. These models are distinguished from each other by the electronic structure and by 
the recombination mechanism, and use the Simons-Taylor theory [10] which neglected 
conduction by hopping among localized states and hence, the conduction is only in extended 
states. Each of the above models explains only some but not all the experimental results. The 
agreement between experiment and models is excellent in the high temperature regions. However 
the models and experimental results diverge in the middle and low temperature regions. All these 
simulation models have not considered the electron conduction by hopping in the localized states. 
According to Cloude, Spear et al. and Johanson [11-13], the hopping contribution to the steady 
state photoconductivity takes place at the low temperature range which is near 100 K and below. 
It is possible that both mechanisms contribute to the photoconductivity: conduction by free 
carriers in the extended conduction and valence band states and electron hopping through the 
localized states. 

Shklovskii, Fritzsche and Baranovskii [14] have developed a theory to explain the very low 
temperature photoconductivity in which geminate recombination and energy loss hopping through 
localized states were considered. The very low temperature region was successfully explained by 
this theory. Monroe and Baranovskii et al. have also developed a theory in the low temperature 
region [15, 16]. They explain the rise of the photoconductivity with the temperature by a transport 
energy, tE , where the hopping conduction contribution is maximum. With increasing 
temperature, tE  moves upward into more shallow localized states. The upward hops of electrons 
to the vicinity of tE determine the transport. 

The primary purpose of this work is to give some insight in which the transport model, of 
either through extended states or by hopping in localized states, reproduces approximately all the 
observed experimental behaviour of the a-Si:H steady state photoconductivity. 

2. DENSITY OF STATES 
The density of states ‘DOS’ used in the model includes exponential distributions attributed to 

the conduction band tail and to the valence band tail which are given by: 
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where k  is the Boltzmann constant, cE  and vE  are the conduction and valence band edge 
energies, cG  and vG  are the band edge densities of states and cT  and vT  are the characteristic 
absolute temperatures of the conduction and valence band tail, respectively. 

The density of the defect states ( )ED  related to the density of the dangling bond states is 
developed according to the last version of the defect pool model [17-19]. The defect states density 
( )ED  expression is as follows: 
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In equation (3), ( )EP is the defect pool of a Gaussian form with σ  and pE  its width and 

peak position in the gap, *T  is the equilibrium temperature (freeze-in temperature) for which the 
density of states is maintained, vvo TkE =  is the width of the exponential valence band tail. H  
and SiSiN are the total concentration of hydrogen and the total concentration of electrons in the 
material respectively. 

The density of the defect states ( )ED  divided into components of different charge densities 

that can be neutral ( oD ), positively charged ( +D ) or negatively charged ( −D ) if occupied by 
zero, one, or two electrons, respectively are defied by: 

( ) ( ) ( )EfEDED ++ =                (5a) 

( ) ( ) ( )EfEDED oo =                (5b) 

( ) ( ) ( )EfEDED −− =                (5c) 

The occupation functions ( )Ef + , ( )Ef o  and ( )Ef −  of dangling bond states +D , oD  and 
−D  are given by [18]: 

( ) [ ]( ) [ ]( )TkUE2E2expTkEEexp21
1Ef

ff −−+−+
=+            (6a) 

( ) [ ]( ) ( )EfTkEEexp2Ef f
o +−=              (6b) 

( ) [ ]( ) ( )EfTkUE2E2expEf f
+− −−=              (6c) 

The dark Fermi level fE  position in the gap is determined by considering the charge 
neutrality condition, involving all the densities of free, trapped carriers and the dangling bond 
occupancies. 

Table 1 lists the parameters of the simulated dangling bond and the valence band tail 
densities, which are within the range of the published values in the literature [19]. For the 
simulated conduction band tail density parameters, the values of cG  and cT  have been chosen 
according to references [20] and [21], respectively. 

Figure 1 shows the density of states distribution for un-doped a-Si:H. Because the density of 
dangling bond states ( )ED  is dependant on the Fermi level fE  which is situated at the middle 
of the gap in un-doped a-Si:H. This makes the density of states distribution symmetric about the 

oD  peak. 
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Table 1: Parameters used for the density of states calculation 
Parameters  Value 

vG  (cm-3.eV-1) 1021 

cG  (cm-3.eV-1) 7 1021 

vT  (K) 650 

cT  (K) 210 
*T  (K) 500 

gE  (eV) 1.9 

voE  (meV) 56 

pc EE −  (eV) 0.63 
σ  (eV) 0.19 

SiSiN  (cm-3) 2 1023 

H  (cm-3) 5 1021 
U  (eV) 0.2 

 
Fig. 1: Schematic illustration of the density of states in un-doped a-Si:H 

3. STEADY STATE RATE EQUATIONS 

Figure 2 shows schematically the conduction band tail state density ( )EGc , the valence band 
tail state density ( )EGv  and the dangling bond state density with three possible charge states 

represented, respectively ( )EDo , ( )ED+  and ( )ED− . 

The arrows represent the recombination and the hopping paths. There are three possible 
recombination paths where the direct capture of free electrons and holes may take place; in the 
conduction band tail states, in the dangling bond states and in the valence band tail states. In 
regard of the hopping path, two transitions at the energy levels iE  and jE  schematise the hop up 

of electrons from iE  to jE  and the hop down of electrons from jE  to iE . G  is the generation 
rate of free carriers under continuous illumination. 

The rate equations which describe the mechanism of transport in the steady state are the 
continuity equations for electrons and holes (equations (7) and (12), and the multiple trapping 
equations (equations (8), (9), (10) and (11)). 
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Fig. 2: Density of states and representation of the electron and hole transitions 

(1): hole capture and electron emission by −D  states; (2): hole capture and electron emission by oD  
states; (3): electron capture and emission by oD  states; (4): electron capture and emission by +D  
states; (5): hole capture and emission by vg  states; (6): electron capture and emission by vg  states; 

(7): hole capture and emission by cg  states; (8): electron capture and emission by cg  states and (9): 
electron hopping. 

The rate equations at different transition levels can be written as: 
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In addition, we have the charge neutrality equation written as: 

0NppNnn
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i
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i =+++−−− ∑∑∑∑ +−              (13) 

The different notations used in the above equations: n , p  are the free electron and hole 
densities; in , ip are the trapped electron and hole densities on the level i  of the conduction band 

tail states ( )Egc  and the valence band tail states ( )Egv ; −
iN , +

iN the negative and positive 

charge dangling bond states on the level i  are ( ) Ed.ED i
−  and ( ) Ed.ED i

+ ; c
tiN , v

tiN  the 
densities of the level i  are ( ) Ed.Eg ic  and ( ) Ed.Eg iv ; dbiN  the density of the level i  is 

( ) Ed.ED i ; G  is the optical generation rate; ∑=
i

c
tiT NG  is the total density of conduction 

band tail states; c
nC , c

pC  are the capture coefficients of electrons and holes in the conduction 

band tail states; v
nC , v

pC  are the capture coefficients of electrons and holes in the valence band 

tail states; +
nC , −

pC  are the capture coefficients of electrons and holes by the dangling bond states 
+D  and −D ; o

nC , o
pC  are the capture coefficients of electrons and holes by the dangling bond 

oD . ( )in1 , ( )ip1  are the electron (hole) emission factors from the level i  and ( )ino
i , ( )ipo

i  
are the electron (hole) emission factors to the conduction (valence) band from the defect state 

oD . 
Equation 8 describes: (1) the carrier multiple trapping process performed by carrier capture 

and release by me conduction band tail states, (2) the hop in the level i  from another localized 
level and (3) the hop of electrons out to another localized level [22]. The hopping process theory 
of amorphous semiconductors is just applied to the nearest neighbours of a given state [23]; that is 
the electron jumps to its nearest neighbour via tunnelling between an initial state located at the 
energy level iE and a target state located at the energy level jE . The term j,iΓ  is the hopping 

rate from a state of energy iE  to another state of energy jE  over the distance j,iR , it is 
described by the Miller and Abraham expression [24]: 
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where oν  is the attempt to escape frequency and a  is the localization radius of the localized 
conduction band tail states. j,iR  is the hop distance from energy iE  to energy jE . For an 

electron in a tail state at energy iE , the downward hop distance j,iR , of this electron to a 

neighbouring localized state at energy, ij EE ≤  has the following expression [16]: 
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The upward hop distance j,iR  of this electron to a neighbouring localized state at energy, 

ij EE > , is defined by: 
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In equation (8), the terms (2) and (3) contain summations over all j  including ij = . It should 
be noted that the rate equations (7)-(12) form non linear system. This is numerically solved by the 
Newton Raphson method where n , p , in , ip , −

iN , +
iN  are evaluated for each value of 

temperature. 
The total hopping photoconductivity ( hopσ ) is obtained by the application of the Einstein 

relation, hopσ  is evaluated by summation over all the levels i  [22]: 

( )∑ ν=σ
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iν  is equivalent to the probability per second of a carrier jumping out of the level i  and is 
given by [22]: 
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In the multiple trapping mechanism, the free electron and hole in conduction and valence 
bands contribute to the photoconductivity by the known relation: 

( )pne pnmt µ+µ=σ                (19) 

where ( )pn µµ  is the electron (hole) mobility in the conduction (valence) band and e is the 
electron charge. 

When the multiple trapping and hopping processes occur simultaneously, the whole 
photoconductivity ( pσ ) is simply the sum of equation (17) and (19): 

hopmtp σ+σ=σ                 (20) 

Table 2 lists the parameter values used in our simulation which are those mostly referred to in 
the literature: The values of the different recombination coefficients are taken from reference [21]. 
The mobility’s for electrons and holes are respectively, 112

n V.s.cm10 −−=µ  [12, 25] and 
112

p V.s.cm3.0 −−=µ  [12]. The attempt to escape frequency oν was taken equal to 2 1011 s-1 

which is close to the communally used value ( 112
o s10 −=ν ) and the localization radius of the 

order cm10a 7−= [26]. 

Table 2: Parameters used for the photoconductivity calculation 
Parameters  Value 
( vc NN = ) (cm-3) 1020 

( o
p

o
n CC = ) (cm-3.s-1) 5 10-8 

( −+ = pn CC ) (cm-3.s-1) 5 10-7 

( v
p

c
n CC = ) (cm-3.s-1) 5 10-8 

( v
n

c
p CC = ) (cm-3.s-1) 5 10-9 

nµ  (cm2.s-1.V-1) 10 

pµ  (cm2.s-1.V-1) 0.3 

oν  (s-1) 2 1011 
a  (cm) 10-7 
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4. RESULTS AND DISCUSSIONS 
Figure 3 shows the modelled temperature dependence of the normalized photoconductivity 

Gepσ  for 1320 s.cm10G −−=  over a range extending from 30 to 500 K. From the figure, we 
can distinguish four regions: 

 
Fig. 3: Temperature dependence of the normalized photoconductivity 

in un-doped a-Si:H for 1320 s.cm10G −−=  

Region I 
This region corresponds to very low temperatures. The normalized photoconductivity is very 

small and nearly constant; it has the value of 3 10-11 cm2/V. 

Region II 
This region covers the range of low and intermediate temperatures. The normalized 

photoconductivity highly increases by several orders of magnitude and has a thermally activated 
behaviour with a small activation energy ( eV12.0Ea = ). 

Region III 
This region corresponds to high temperatures which includes the maximum and the minimum 

of the photoconductivity. This curve shows the thermal quenching; a region in which the 
photoconductivity decreases with increasing temperature. 

Region IV 
This region corresponds to very high temperatures. In this region also, there is an increase in 

the photoconductivity with temperature. 
Figure 4 shows the temperature dependence of the normalized photoconductivity in un-doped 

a-Si:H for 1320 s.cm10G −−= . Curve A shows ( )Tpσ  calculated with modelling solely the 
multiple trapping process and neglecting the hopping process. The hopping terms in the rate 
equation (8) can be zeroed by taking the attempt to escape frequency oν  equal to zero. In this 
case, pσ  is due only to free electron and hole conduction in the conduction and in the valence 
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bands by multiple trapping process. However, curve B shows ( )Tpσ  calculated with modelling 
the hopping and the multiple trapping processes which occur simultaneously. In curve A, the 
model explains just some of the experimental resultants but not all. For example, the model 
provides the thermal quenching region III and the region IV in Fig. 3, however, in the region II, 
the activation energy ( aE ) of the calculated dependence ( )T1log pσ  is 0.03 eV which is less 

than that of the dependence ( )T1log pσ  obtained experimentally ( eV11.0Ea = ) [1, 3-5]. 

Furthermore, the constant behaviour of pσ  in region I of Fig. 3 proved experimentally [1-5] 
disappears in this case. In curve B, it appears clearly that the model describes, in a self consistent 
way, all the features observed for the temperature dependence of the photoconductivity in a-Si:H 
[1-5]. The most important results are the constant magnitude of ( V/cm103Ge 211

p
−=σ ) in 

region I and the increase of pσ  by several orders of magnitude in region II with an activation 

energy ( eV12.0Ea = ) [5]. Curve A and B are superposed at temperatures ( K140T > ), in this 
range of temperature, both curves show an excellent agreement with the experimental results 
mentioned in references [1-5]; the conduction is carried by the free electrons and holes through 
the conduction and valence bands and according the multiple trapping transport process. In this 
case, the effect of the hopping on the photoconductivity is not pronounced. 

 
Fig. 4: Temperature dependence of the normalized photoconductivity 

in un-doped a-Si:H for 1320 s.cm10G −−=  

Shklovskii et al. [14] developed a theory to explain ( )Tpσ  in the very low temperature 

region (region I). The theoretical expressions of Gepσ  is written [14] as: 

c

22
p

Tk
Lae6.0

Ge
=

σ
                (21) 

where L  is the solution of equation ( )[ ] 13
o LaGlnL

−
τ=  and it represents the average 

separation of photocarriers in units of a . oτ  the dipole radiative lifetime ( s10 8
o

−≈τ ). If we 



S. Tobbeche et al. 

 

66 

use as values, cm10a 7−= , K210Tc =  and 1320 s.cm10G −−= , we obtain 13L ≈ , 

V/cm106.5Ge 211
p

−=σ which is in well agreement with the calculated 

V/cm103Ge 211
p

−=σ  in the very low temperature region. 

5. CONCLUSION 
The primary aim of this work was to form a general picture of the electronic properties of a-

Si:H to elucidate the transport mechanism. The temperature dependence of the photoconductivity 
of un-doped a-Si:H was studied in the [30-500 K] temperature range. The experimentally 
temperature dependence of the photoconductivity is characterized by the following features: the 
thermal quenching, the low activated region and the temperature independent photoconductivity 
at very low temperatures. All these observations are well reproduced by the model in un-doped a-
Si:H. The interpretation of the model results is through examination of the relative contributions 
of two processes: the multiple trapping and multiple trapping associated with the hopping process. 
This allowed us to show firstly that the multiple trapping transport is an important process and the 
hopping conduction is not significant near the thermal quenching at temperature K140T ≥ . 
Secondly the relative hopping transport below 140 K has made an important contributions process 
in the photoconductivity result of a-Si:H. It explains successfully the low activated region and the 
temperature independent photoconductivity at very low temperatures. 

Finally, we can conclude that the multiple trapping model associated with hopping process 
reproduces well the experimental features mentioned above than the simple multiple trapping 
model. 
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