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Résumé - Nous simulons numériquement les effets thermiques produits dans l’air (760 Torr) par 
une décharge électrique stationnaire de faible courant.  Nous proposons une fonction 
mathématique qui simule l’injection de l’énergie dans le gaz.  La décharge simulée est de type 
pointe positive plan négatif, de distance inter électrodes égale à 6 mm et possédant la symétrie 
de révolution autour de l’axe de la décharge.  L’évolution spatio-temporelle des neutres est 
analysée sur la base des équations classiques de la dynamique des fluides, c’est-à-dire 
équations de continuité, de la quantité de mouvement et de l’énergie, dans un espace à deux 
dimensions (géométrie de révolution cylindrique).  Nous avons adopté pour la résolution du 
système, la procédure dite F.C.T. (Flux Corrected Transport), dont le principe réside dans 
l’application d’une diffusion corrective au profil issu d’un schéma dispersif, en localisant cette 
diffusion uniquement dans les régions où des oscillations ont tendance à se produire. 

Abstract - The numerical simulation of the variation of the neutral molecule density induced by 
the strong correlation between the dynamics of the electron gas and that of the neutral gas is 
studied in a 2-D numerical modelisation.  The energy injection is simulated by a mathematical 
function that represents the spatial dependence of the discharge density. The simulated 
discharge is a positive point to plane discharge in a gap = 6 mm, in air at atmospheric pressure 
(760 Torr), with cylindrical symmetry.  The hydrodynamic set of equations, i.e. equations of 
transport for mass, momentum and energy, is solved by the flux corrected transport (F.C.T.) 
method, in employing the procedure of time splitting for the two space variables. The space and 
time distributions of the fundamental hydrodynamic quantities, density and temperature of the 
neutral gas are obtained. 

Mots clés: Décharge dans les gaz - Transfert d’énergie - Plasma froid - Phénomène de transport. 

1. INTRODUCTION

During the inception and development of the plasma in a point to plane gas discharge, a 
spatio-temporel evolution of the temperature of the neutral gas occurs as a result of plasma-
neutral molecules energy interaction.  The temperature gradient causes a phenomenon of 
diffusion and convection as a result of the accompanied strong heterogeneity in the neutral 
gas density and pressure.  The fundamental role of neutral heating in the inception of gas 
breakdown has been shown by theoretical studies [1-3], as well as by experimental studies 
[4, 5]. The behaviour of a point to plane discharge has been optically and electrically 
analysed for a centimetric gaps in air at atmospheric pressure. [6] 

This study has shown that, if a steady high voltage is applied to the point through a high 
value resistance, and induced discharge appears above a threshold value Vs, the discharge is 
not steady but composed of a succession of individual discharges. For a potential greater 
than Vs, some of these individual discharges develop completely into transient arcs [7].  On 
the thermodynamically point of view, for the neutral gas, this corresponds to an energy 
injection which increases its temperature and gives rise to convective movements. 
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In this paper, we study the thermodynamics of the neutral gas subjected to energy 
injection as the result of electric discharge in the considered medium.  This approach to the 
problem allows to consider the discharge only on its energetic aspect.  The discharge plays 
the role of an injection in the gas.  To define the profile of this energy injection, we propose 
a mathematical function that represents the spatial dependence of the discharge density. The 
spatio-temporal evolution of the neutral gas particles is studied on the basis of 
hydrodynamic set of equations, i.e. equations of transport for mass, momentum and energy.  
The simulated discharge is a positive point to plane discharge [6]. The simulation of the 
discharge in space is two-dimensional (i.e. r, z) with cylindrical symmetry.  The 
hydrodynamic set of equations is solved by the flux corrected transport [8, 9] (F.C.T.) 
method using the procedure of time splitting for the two space variables.  The space and 
time distributions of the fundamental hydrodynamic quantities, density, transport velocity 
and temperature of the neutral gas are obtained. 

 
2. MODELING OF THE NEUTRAL DYNAMICS 

2.1 Basic equations 
The formalism is that of of hydrodynamics with the hypothesis of a slightly ionised gas. 

We assume that the energy injection is weak enough to avoid molecules dissociation.  Air is 
considered as a monomolecular gas with well known properties of conduction and viscosity. 
The point to plane discharge is supposed with revolution symmetry along the axis of the 
discharge, and thus the 2-D model used for its simulation is a bidimentional model in r and 
z. The continuity equation for neutral particles is : 

( ) 0VN.
t
N

=∇+
∂
∂                                                                             (1) 

where N is the density of the neutral gas, and V their total velocity. 
In this model we neglected the momentum transfers from charged particles to neutral 

molecules. In fact, in slightly ionised gases discharges, it can be considered that convective 
movements in the gas are mainly due to temperature and pressure gradient, more active than 
the direct momentum transfers.  

So, the equation for velocity of the neutral particles is : 
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∂
∂
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where M is the mass of the gas molecules, P the pressure of the neutral molecules and Γ  the 
viscosity tensor.  

In cylindrical coordinates, the components of the viscosity tensor can be written as : 
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where  τrr , τzz , τrz , τθθ  are the components of the viscosity tensor. 
 
The energy injected in the resistive neutral medium by time unity is transformed in 

different forms (rotational and vibrational energy, electronic excitation, thermal energy, 
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ionisation).  Taking into account our time schedule analysis, it can be assume that only the 
translation, the rotational and an important part of the electron excitation energy 
immediately relax in thermal energy.  So, the energy equation for neutral molecules can be 
written as : 

( ) ( ) ( ) VIP.Tt,z,rV.W.
t

W 2 Γ+∇−∇λ+Φ=∇+
∂
∂           (5) 

where I

, )t

is a unit matrix, W the total energy and represents the part of energy 
injected by the discharge and transformed in thermal energy. The choice of the function 

allows to adjust the spatial localisation of the energy injection. The results 
presented afterwards correspond to a major injection of energy at the vicinity of the point, as 
shown by the experimental results obtained by interferometry. [6] 

Φ( , , )r z t

Φ( ,r z

To close the system composed by eq. (1), (2) and (5), we added the equation of state 
(perfect gas): 

TkNP =                                                                                        (6) 

where k is the Boltzmann constant and T the gas temperature. 
 
2.2 Numerical scheme 

The transport equations for density, momentum and energy can be written on the 
generalised form: 

( ) ( φφ =φ∇ν−φρ∇+φρ
∂
∂ SV..
t

)                                        (7) 

where  is the volumetric mass, φ  the transported physical property, νρ φ the diffusion 
coefficient and Sφ the source term.  We used the method of finite volumes based on the 
macroscopic balances.  

This method provides a greater generality than other methods, like finite elements or 
finite differences, specially for the solution on intricate outflows near the walls. [10] 

For this purpose, the analysed area is sliced in a set of cells (control volumes), non 
overlapping each others, and surrounding each node of the discretisation network.  The 
finite volume method takes into account the preservation principle of the physical property  

  in an elementary cell.  The preservation of the property is available for any set of cells, 
and thus in the whole domain, whatever the node number. 
φ

The time splitting scheme allows to replace the integration of multidimensional equation, 
by successive monodimensional integrations in r and z directions.  Along a direction x (may 
it be r or z), eq. (7) can be integrated as : 
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where   is the value of control’s volume, S  the value of surface and τ i i A
i± 1

2
 the values at 

i ± 1
2  of the surface between control volumes. 
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For the explicit centred scheme, the relation (8) can be written as: 
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To correct this disperse effects of the scheme, the flux corrected technique developed by 
Boris and Book [9] are used. 
 
2.3 Boundary conditions 

The study domain is defined by figure 1. The limit velocity of the molecules on the 
surface is assumed equal to zero. As it is necessary to take into account the local heating 
effects, the temperature of the surface is assumed equal to the averaged temperature of the 
surrounding gas, and the temperature of the electrode body is assumed invariable and equal 
to the ambient temperature. On the axis : 

( ) ( ) ( ) ( ) 0t,z,0Vt,z,0
r
Vt,z,0

r
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r
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==
∂
∂

=
∂
∂

=
∂
∂                      (10) 

The initial conditions are : gas density N (r, z, 0) = 2.5 1019 cm-3 for T (r, z, 0) = 293 K, 
the pressure P (r, z, 0) =760 Torrs and U (r, z, 0) = 0 in a quiescent surrounding gas.  
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Fig. 1: Domain study 
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The profile of the injection energy is defined by : 
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where  r  is the radius,  rc = 0.15 mm is the extension radius of the energy injected (with 
regard to the axis), d = 6 mm the distance point to plane (with regard to the plane), J0 is the 
zero order Bessel function and C a parameter which is adjusted to represent the energy 
injected by volume unity.  The “ Bessel ” radial dependence and the sinusoidal axial 
dependence are essentially a consequence of inhomogeneous ionic and electronic densities 
observed by Vennin et al. [6]. 
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Fig. 2: Normalised profiles of terms of energy transfer 
The spatial evolution of the main values of the neutral gas (temperature and density) are 

shown in figures 3, 4, 5 and 6, where we show the interaction between the neutral and the 
charged particles.   
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Fig. 3: Comparison of the radial neutral density 
profile from experiment and numerical 
model at two positions (z = 4.5 mm and 
z = 2.5 mm, z = 6 mm represent the 
anode and z = 0 mm represent the 
cathode) 
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Fig. 4: Comparison of the radial neutral 
temperature profile from experiment 
and numerical model at two positions (z 
= 4.5 mm and z = 2.5 mm, z = 6 mm 
represent the anode and z = 0 mm 
represent the cathode) 
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Fig. 5: Comparison between experiment and 
numerical profile of the neutral density 
along the discharge axis 
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Fig. 6: Comparison between experiment and 
numerical profile of the neutral 
temperature along the discharge axis 

 
 

The examination of the first set of curves (Fig. 6) shows the evolution of the neutral gas 
temperature at different points along the axis of the discharge.  We can see heating process 
is different from one point to another, owing to spatial distribution of injected energy.   Until    
t = 2 , the energy transfer from ionised gaseous to neutral gas is greater than dissipation 
by thermal conductivity.  So the temperature increases rapidly in places where the injection 
is maximum.   

µs

The convective movements which depended essentially on pressure gradient react 
immediately to this increasing of the temperature, so more exactly to ∇  which 

constant, and the energy is dissipated rapidly. In so doing this creasing is followed by a 
stabilisation from 5 . It can be noted that the maximum of the temperature (900 K) and the 
minimum of the density (1.05 10

T
N ≈

sµ
19 cm-3), are localised at a distance equal to (d/3) from the 

plane, these numerical results confirm the experimental results (6). 

Figure 7  gives the evolution of the rate of neutral de population ( ) 00 NNN −  , N0 
being the initial density.  Clearly we observed on these set of curves, that the depopulation 
depends on the local variation of temperature.  So the depopulation rises from the point (z = 
1 mm) and during the time moved to the plane.  This is a consequence of axial propagation 
of thermal wave.  The maximum value reached by the depopulation rate at 

(stabilisation phase) is equal to 70 % at z = 3 mm, and the minimum is equal to 50 
% at z = 1 mm. This shows that the variation is governed by spatial current density (or 
injected energy) distribution. 

t = 5 µs

Figure 8 shows the effects of axial pressure gradients. This wave propagates in a medium 
set in movement due to direct momentum transfer. We can see that the acoustic wave’s 
velocity is equal to 340 m/s. We can see that the heating process is more important in the 
axis than elsewhere (r > 0). It’s the consequence of the important  energy transfer in this 
region. 
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Fig.7: Temporal evolution of  neutral density 
for three positions along the discharge 
axis - ( a ): near the cathode, ( b ): at the 
middle of the discharge, ( c ): near the 
anode 
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Fig. 8: Radial profile of  neutral pressure from 
different instants (0 µs, 0.45 µs, 0.90 µs 
and 1.20 µs) 

4. CONCLUSION

In conclusion it can be said that the present numerical calculations have demonstrated 
that the mathematical formalism suggested is suitable for the modelling of neutral thermal 
imprint. This study shows also that the stabilisation of the neutral gas is mainly function of 
the energy injection distribution, and the neutral gas is not considered like an infinit energy 
absorber.  

So, as soon as a current goes through the neutral gas, obviously a joule heating effect 
increases locally the temperature. It results a neutral movement which has for aim to make 
uniform the pressure in the system. 
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