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Abstract — Two-di ional, compressible Euler and Navier-Stokes equations are solved
numerically by finite volume method to predict steady and unsteady flows around bluff-bodies. An
unstructured grid generator code is linked in an antomatic way fo the flow solver within a spatial
adaptation procedure. The aim is to predict complex compressible flows such as shock waves and
separated boundary layers with accurate and efficient calenlations. Computational results for
many iest cases are compared successfully with published data

Résumé — Lex dquations d Euler et les dquations de Nevier-Stokes pour un dcoulement bi-
dimensionnel, compressible, i ire ef non ! ire sont résolwes en utilisant e
méthode numérigue aux volumes finis. En vue d'optimiser la procédure de calcul, le géndrateur de
maillage non struciuré et le code de calcul somt lids dynamiquement via wne procédure
d'adaptation spatiale de la grille de caleul. Le but étant de prédire économiguement et
efficacement des phénoménes complexes tels que les ondes de chocy et le détachement de la
conche limite. Les résultats numdrigues de plusieurs cas tests sont comparés avec swecds aux
drngar nuhlidoe dane b Gt
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1. INTRODUCTION

In recent years, great developments in algorithms for Euler and Navier-Stokes equations on
unstructured grids have occurred. The popularity of this new trend in grid generation is
motivated principally by two main advantages. The first one is the simplicity of grid
generation for complex geometries compared to that of block structured grids, particularly for
complicated three-dimensional cases. The second advantage is the local concentration of the
erid points in locations of interest such as that in the near-field region of any object. This
operation can be done through a dynamic way known as adaptive mesh refinement. This
technique is achieved by adding points in regions where solution gradients are relatively large
and removing points where they are not needed. The advantage of such procedure is to
produce higher spatial accuracy at minimal computational cost. Similar techniques are the
temporal adaptation which is used to improve explicit time-marching schemes for unsteady
acrodynamics applications. A comprehensive discussion related to these techniques is
presented by Bartina [1].

The most popular unstructured grids are composed of triangles or tetrahedra, depending on
the nature of the computational domain, which can be respectively, two and three
dimensional. The robustness of the unstructured-grid solver is principally due to upwind
schemes used in finite-volume discretisation of the governing equations. Recently, various
upwind schemes are available either in cell-centered or cell-vertex formulations. Many recent
references [2-4] provide a review and state of the art of unstructured grids and finite-volume
solvers.
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In order to generate accurate, reasonable and economical grids, upwind high order schemes
must be implemented rather than classical first-order ones. The higher-order schemes improve
the resolution and reduce discontinuities in critical regions. Unfortunately, these schemes are
often associated with non-physical oscillations. These oscillations can be suppressed using the
modern upwind schemes that use limiters as the MUSCL approach [5]. The tendency of
adversely affecting the convergence of the solution to steady state associated with such
techniques is successfully avoided by using the differentiable limiters [6]. A key comparative
study of multi-dimensional limiters schemes is reported in [7]. Most compressible solvers use
collocated scheme because non staggered grids do not lead to the known pressure oscillations
as with incompressible flow. However, in a recent study Wenneker et al. [8] proposed a
staggered scheme which has the advantage to be applied simultaneously to compressible and
incompressible flows.

2. GOVERNING EQUATIONS AND NUMERICAL METHOD

The governing equations for two-dimensional viscous compressible flow in Cartesian
coordinates can be expressed in nondimensional form as [9]:
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where A is the area of the computational cell.

The finite-volume approach is based on the physical concept of using macroscopic control
volumes to numerically solve the governing equations. In this study we use the so called cell-
vertex technique, where the flow variables are stored at the nodes and the control volume at a
given node is typically taken to that of the neighboring cells which have a vertex at that node.
The 2D Navier-Stokes solver used for the present flow computation is the NSC2KE code of
Mohammadi [10]. The governing equations are solved by a finite volume upwind technique
using a Roe Riemann [11] solver for the convective part of the equations. The viscous terms
are treated using a standard Galerkin technique and the second order accuracy of the upwind
scheme is realized by a MUSCL limiter. The algorithm used is explicit in time and the steady
solution 1s reached by an iterative scheme. The fourth order Runge-Kutta scheme allows
accurate computation of time dependent flows.

3. INVISCID COMPRESSIBLE FLOW PAST A TYPICAL AIRFOIL

‘The test case used to validate the present solver, corresponds to a transonic flow with free-
stream Mach number (M,J =0.80)and angle of attack (a= 1.250) past a NACA 0012 airfoil.

This case is characterized by the presence of a strong shock wave on the upper surface and a
weak one on the lower surface. So it is necessary to compute the flow with limiters to avoid
numerical oscillations that may occur in their neighborhood. This flow was considered as a
test case by the AGARD reference [12] and numerous researchers among them [13] and [7].
In most previous computations, the upper surface shock wave is more or less clearly captured
while the lower one is generally not captured.

The outer boundary of the computational domain is a circle located 12 chord lengths away
from the airfoil. The adaptation process starts with relatively coarse mesh and after some
iteration, the regions of relatively large dicretisation errors are detected so that the grid can be
locally refined in order to improve the spatial accuracy. At the same time, cells are removed
where they are not needed in order to reduce the computational costs. These steps are looped
until an optimal grid is reached. A mesh swapping procedure can be also applied to obtain
triangles as equilateral as possible. Using the MESH2D [14] code, the calculations start with a
very coarse mesh and then adapted every 500 iterations. The variables chosen to define the
interpolation parameter are the conservative variables and the total pressure. The last grid,
composed by 17770 points, 34464 elements and 1044 points on the airfoil surface is showed
on figure 1 and retained for the numerical calculations. One can sce clearly the grid
refinement obtained near the airfoil wall and in the vicinity of the two shock waves.
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Fig. 1: Close-up of adaptive meshes for NACA 0012 airfoil
at (M, =0.80) and (a=1.25°).
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The present isobars for the test case compared with results reported by [7-8] are shown in
figure 2. As expected, the two surface shock waves are captured in the present investigation
while in the other investigations only the upper shock wave is captured and the lower one is
often hardly noticeable [7-8]. In a similar study [17], where adaptive grid is used the lower
surface shock wave is also captured.

Fig. 2: Isobars (Ap = 0.025 ) for NACA 0012 transonic flow,
(M, =0.80)and (a=1.25°)

The two shock waves are represented in the corresponding surface-pressure distributions in
figure 3. In this figure, the distribution of the coefficient of pressure (c,) is compared to

results from [7]. The computations reveal the sharp shock-capturing ability of the present
solver, The shock locations compare favorably with previous solutions. It can be seen that the
limiter is very effective in suppressing oscillations and yield a remarkable agreement of
pressure distribution with the previous computations [17].
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Fig. 3: Surface pressure distribution for NACA 0012 transonic flow,
(M, =0.80)and (a=1.25°)
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4. VISCOUS FLOW PAST A TYPICAL AIRFOIL

Viscous flow past a NACA 0012 airfoil is solved and compared with previous
computations [7]. The flow parameters used in the simulation are free-stream Mach
number(M _ =0.80), angle of attack (a= 10") and(Rem = 500). This case is characterized by

the presence of a large separated region on the upper surface of the airfoil. The objective of
this numerical calculation is to demonstrate the ability of the present solver to reproduce
accurately the complex flow features using unstructured grids. The computations presented in
this study are realized with 16561 points, 32564 elements and 522 points on the airfoil
surface. The computational points are clustered near the surface of the airfoi!.

5 v AN R 2 S A e B
Fig. 4: Close-up of regenerated mesh, Viscous-flow

(M, =0.80)>(a=10°)and (re, = 500)

Figure 4 shows the computational grid obtained after many adaptation steps. It should be
pointed out that in order to accurately solve the boundary layer, the size of the cell in a
direction normal to the boundary layer should be adequately small.

Fig. 5: Laminar viscous flow around NACA0012 airfoil. Streamlines
in the separation region (y_ -0.80), (a=10°)and (Re, = 500)

The vortex presented on figure 5 extends over 5% of the chord on the upper surface and
compares well with previous computations [7, 15]. The surface-pressure and skin-friction
distributions are presented in figures 6 and 7. The overall profiles are similar to those reported
in the literature [7].
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Fig. 6: Pressure distribution, Viscous-flow , (s, =0.80),(a= 10°)
and (Re, =500)
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Fig. 7: Skin-friction distribution for a viscous-flow
(M. =0.80)>(a=10°)and (Re, = 500)

5. UNSTEADY VISCOUS FLOW PAST A CYLINDER

The vortex shedding behind a circular cylinder is used to validate the present solver. It is
well known that in such a flow and for Re > 35, the wake consists of pairs of vortices that
shed alternately from the upper and lower part of the rear surface that are called the Karman
vortex streets [18]. Even with fixed and steady boundary conditions, the unsteadiness occurs
because of flow instability. The Strouhal number which characterize the dimensionless
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cylinder shedding frequency is established around a fixed value equal to 0.2 [16]. The grid
used in the present study to compute such a flow (Re = /50 and Mach = 0.5) is composed of
9230 nodes and 18284 triangles as shown on figure 8.
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Fig. 8: Close-up of adaptive meshes for a circular cylinder at
(M, =0.50)and (Re, =150).

While in the steady situation, the local time step is used. it is necessary to use a global time
step when an unsteady calculation is carried out. The global time step is defined as the
mimimum of the local time step computed for the whole domain. In such situation. the
convergence becomes more and more slow. Figure 9 shows the instantaneous pictures of the
vortex shedding in form of stream lines and Mach number contours in half period.

6. UNSTEADY VISCOUS FLOW PAST A NACA 0012 AIRFOIL.

As for the circular cylinder, the vortex streets occur in almost any bluff-body flow and
especially downstream airfoils. The case selected in this study is the flow around a
NACAQ012 with the following conditions (Re = 22000, Mach = 0.1 and angle of attack =
30°). We have done more than 50000 iterations to reach the time t = 62 secs with an
optimized computational grid obtained afier many adaptations. The structure of the flow is
presented in figure 10 by a selection of instantaneous views in one period, (f = 0.125 Hz).

7. CONCLUSION

A high-resolution procedure has been tested for Euler and Navier-Stokes computations on
unstructured grids. Numerical computations have confirmed the oscillation-removal
capability of the Von Albada limitor. The capability of the adaptive grid technique to producc
accurate solution with an optimal distribution of the vertexes is also demonstrated. The
modemn techniques cited above are applied to predict the details of the challenging transonic
compressible inviscid and viscous flows around a NACA 0012 airfoil. After validation with
the unsteady flow behind a circular cylinder, the code was successfully applied to the
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Fig. 9: Instantaneous stream line and Mach number contours behind circular a cylinder
(M,, =0.50) and (Re,, =150) (Times are in seconds).
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numerical prediction of an unsteady flow past a NACA 0012 airfoil with excessive relative
inclination.
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Fig. 10: Instantaneous Mach number contours and stream lines NACA0012, (Re = 22000,
Mach = 0.1 and angle of attack = 30°) (Times are in seconds).
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NOMENCLATURE

A area of the computational cell Pr Prandtl number
E total energy Re  Reynolds number
F.G convective flux vectors St Strouhal number
F,,G, viscous flux vectors ! time
H total enthalpy U cell averaged value
M Mach number u,v  cartesian velocity components
a ” static pressure x,y  cartesian coordinates
P density U molecular viscosity

. 4 specific heat ratio
To>TyyT,  VISCOUS stresses
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