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1. Introduction  

 

The traditional transportation system, which includes an internal combustion engine, is the 

primary source of emissions. In recent years, there has been a rise in total consumer penetration 

of Electric Vehicles (EVs) to reduce air emissions and oil dependency in transportation [1]. 

The PV and EV are exciting developments for enhancing energy efficiency and increasing the 

share of renewable energy sources in EDS. Temporal modeling of PV power generation and 

EV Charging Stations (EVCSs) is relevant for many reasons, including urban planning and EDS 

design and service, when it comes to the implementation, usage, and device integration of these 

technologies [2]. The EV charging stations, when connected to the EDS, offer a wide range of 

applications. When attached to the EDS, the EVCSs can be used for a variety of purposes. The 

most critical topic in this regard is the Grid to Vehicle (G2V) service mode in the power 

generation and distribution sector for reducing electricity loss and emissions by concentrating 

on the incorporation of large-scale renewable resources [3]. 

 

1.1 Literature review 

 

Many charging stations for EVs connected to the electric grid, will have a major impact on the 

EDS. Various researchers on the planning problems concerning DGs and EVCSs in EDS can 

be found in numerous literatures. In the literature, numerous techniques, and algorithms to this 

problem: applied Mixed Integer Non-Linear Programming (MINLP) to maximize the benefit 

of the PEV-parking lot’s owner [4], Mixed integer second-order cone programming (MISOCP) 

for minimize various annual cost in EDS [5], MISOCP for minimizing the total losses with 

maximizing the total DG and EV charging station [6], Probabilistic method and fuzzy theory 

for minimisation of DG installation, and maintenance costs [7], Genetic algorithm (GA) for 

maximize the profit measured by its net present value [8], Particle Swarm Optimisation (PSO) 

for maximisation of annual revenue for the power supply company [9], Differential 

evolutionary particle swarm (DEEPSO) algorithm to minimised electricity markets and wind 

DG cost [10], Grasshopper Optimizer Algorithm (GOA) for energy loss and voltage stability 

indexes reduction [11], Artificial Bee Colony (ABC) algorithm to minimize the power loss [12], 

Salp Swarm Algorithm (SSA) to minimize the fluctuation in the DC-bus voltage to the grid 

[13], Improved Differential Evolutional Algorithm (IDEA) for reduction the investment cost 

[14], Hybrid Optimization platform HOMER to minimizing the total net present cost [15], and 
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recently proposed Hybrid optimization algorithm for minimising the voltage deviation, with 

power loss and DGs costs [16]. 

 

1.2 Application SSA on RES problems   

 

Recently, meta-heuristic algorithms have become surprisingly very popular and superior in 

solving various engineering problems. Salp swarm algorithm (SSA) is a new meta-heuristic 

algorithm introduced in 2017 [17].  

Several researchers have applied the SSA algorithm for several practical applications in 

renewable energy topics: optimal control scheme for LVRT capability improvement of power 

grid-connected PV power plants [18], optimal fractional-order PID controller of a two-area 

power system integrated with small hydro plants [19], optimal PID parameters for load 

frequency control of hybrid RES with uncertainty [20], optimization of voltage source inverter 

controller in EDS with PV source [21], the energy management with emission of RES micro-

grids to minimize the total operating cost [22], identifying the parameters of the electrical 

equivalent circuit of PV [23], optimal reconfiguration and RES planning in EDS for reducing 

the active power losses [24]. Also, optimal allocation of PV source and shunt capacitor in EDS 

for minimized the active power loss [25], optimal benefits of high PV penetration EDS with 

battery and capacity allocation [26], optimal MPPT control for variable speed WT generator 

based PMGA [27], and optimal MPPT control PV system under partial shading condition [28].  

 

1.3 Contribution and organization 

 

This paper addresses the optimal integration of multiple solar photovoltaic sourced DG units in 

EDS with insertion EV charging station various CSSA algorithms. The optimal integration is 

designed to minimize the following technical and economic parameters: Active Power Loss 

(APL), Annual Losses Cost (ALC), and Total Voltage Deviation (TVV). In this study, the 

optimal integration of renewable-based DGs was applied and tested on a standard IEEE 69-bus 

system considering the uncertainties of load demand, EVCS, and DGs throughout the day. The 

main reason for studying these proposed scenarios is to show the impact of the integration of 

multiple DGs into EDS considering the various uncertainties to make the study more realistic. 

This paper contains five sections along with the references list, it is organized as follows: 

Section 2 provides the formulation of the problem and the formulation of the mathematical 

problem. The various Chaotic SSA applied are presented in section 3. The simulation results 
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and discussion are presented in section 4. Finally, the conclusions and future extensions are 

discussed in section 5. 

 

2. Problem Formulation   

 

2.1 Multi-objective function 

 

To optimally DG integration into the EDS, several objective functions are used. In this paper, 

the following three main OFs are considered: 

The Active Power Loss (APL) on the distribution line connecting from bus i to bus j represented 

by [29-31]: 

                                    𝑃𝐿𝑜𝑠𝑠(𝑖, 𝑗) = 𝛼𝑖𝑗(𝑃𝑖𝑃𝑗 + 𝑄𝑖𝑄𝑗) + 𝛽𝑖𝑗(𝑄𝑖𝑃𝑗 + 𝑃𝑖𝑄𝑗)                            (1) 

Where, 

                                  𝛼𝑖𝑗 =
𝑅𝑖𝑗

𝑉𝑖𝑉𝑗
cos  (𝛿𝑖 − 𝛿𝑗) and 𝛽𝑖𝑗 =

𝑅𝑖𝑗

𝑉𝑖𝑉𝑗
sin  (𝛿𝑖 − 𝛿𝑗)                          (2) 

And, 

 𝐴𝑃𝐿 = ∑ ∑ 𝑃𝐿𝑜𝑠𝑠(𝑖, 𝑗)

𝑁𝑏𝑢𝑠

𝑗=2

𝑁𝑏𝑢𝑠

𝑖=1

                                                     (3) 

𝑂𝐹1 = 𝑚𝑖𝑛 (∑𝐴𝑃𝐿(𝑡)

24

𝑡=1

)                                                      (4) 

                     

Then, the Annual Losses Cost (ALC), which depends on the active power loss, can be calculated 

as follows [29]: 

                                               𝐴𝐶𝐿(𝑖, 𝑗) = 𝑃𝐿𝑜𝑠𝑠(𝑖, 𝑗) × 𝐾𝑃 × 𝑇                                               (5) 

Where, 

𝑂𝐹2 = 𝑚𝑖𝑛 (∑𝐴𝐿𝐶(𝑡)

24

𝑡=1

)                                                    (6) 

 

The  Total Voltage Variation (TVV) can be defined as [30]: 

𝑇𝑉𝑉(𝑖) = ∑|1 − 𝑉𝑖|

𝑁𝑏𝑢𝑠

𝑖=2

                                                      (7)  

Where, 
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𝑂𝐹3 = 𝑚𝑖𝑛 (∑𝑇𝑉𝑉(𝑡)

24

𝑡=1

)                                                    (8) 

 

2.2 Power balance constraint 

 

Equality constraints are represented by the power balance equations [29-32]: 

 𝑃𝐺 + 𝑃𝐷𝐺 = 𝑃𝐷 + 𝑃𝐿𝑜𝑠𝑠                                                         (9)   

𝑄𝐺 = 𝑄𝐷 + 𝑄𝐿𝑜𝑠𝑠                                                           (10)  

 

2.3 Distribution line constraints 

 

Inequality constraints are represented by the distribution line [5-12]: 

                                                             𝑉𝑚𝑖𝑛 ≤ |𝑉𝑖| ≤ 𝑉𝑚𝑎𝑥                                                         (11) 

                                                              |𝑉1 − 𝑉𝑗| ≤ ∆𝑉𝑚𝑎𝑥                                                          (12) 

                                                                  |𝑆𝑖𝑗| ≤ |𝑆𝑚𝑎𝑥|                                                             (13) 

 

2.4 PV-DG constraints 

 

Inequality constraints of PV source-based DG [27-32]: 

                                                              𝑃𝐷𝐺
𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺 ≤ 𝑃𝐷𝐺

𝑚𝑎𝑥                                                       (14) 

 

                                                            2 ≤ 𝐷𝐺𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ≤ 𝑁𝐵𝑢𝑠                                                    (15) 
 

𝑁𝐷𝐺 ≤ 𝑁𝐷𝐺.𝑚𝑎𝑥                                                           (16) 
 

𝑛𝐷𝐺,𝑖/𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ≤ 1                                                       (17) 

 

3. Description of various CSSA     

 

In this section, a novel hybridization approach based on the SSA algorithm and chaos theory 

based on various chaotic maps.  

 

3.1 Mathematical model of basic SSA 

 

The population of salps X consists of N agents with d-dimensions as described in the following 

equation [17]: 
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                                                    𝑋𝑖 =           

[
 
 
 
𝑥1

1 𝑥2
1 ⋯ 𝑥𝑑

1

𝑥1
2 𝑥2

2 ⋯ 𝑥𝑑
2

⋮ ⋮ ⋯ ⋮
𝑥1

𝑁 𝑥2
𝑁 ⋯ 𝑥𝑑

𝑁]
 
 
 

                                             (18) 

In basic SSA, the position of the leader is updated according to the follows [17, 33]: 

         𝑋𝑖
1 =  {

𝐹𝑖 + 𝑐1[(𝑢𝑏𝑖 − 𝑙𝑏𝑖)𝑐2 + 𝑙𝑏𝑖]      𝑐3 ≥ 0

𝐹𝑖 − 𝑐1[(𝑢𝑏𝑖 − 𝑙𝑏𝑖)𝑐2 + 𝑙𝑏𝑖]       𝑐3 <  0
                                 (19) 

The first coefficient c1 is introduced to make a balance between the exploration and the 

exploitation is defined in flowing equation:  

                                                              𝑐1 = 2. 𝑒
−(

4𝑘

𝑘max
)
2

                                                            (20) 

 

The follower salps update their positions based on Newton’s law of motion using the following 

equation: 

 

                                              𝑋𝑖
𝑘 =

1

2
(𝑋𝑖

𝑘 + 𝑋𝑖
𝑘−1)        2 ≤ 𝑘 ≤ 𝑁                                           (21) 

 

 

3.2 Mathematical model of chaotic SSA 

 

The analysis of chaotic dynamical systems is referred to as chaos theory. Nonlinear dynamical 

systems that are particularly sensitive to their initial conditions are known as chaotic systems. 

In other words, minor variations in the initial conditions lead to large variations in the system's 

outcome. In other words, deterministic systems may exhibit chaotic behavior as well. In other 

words, deterministic systems may exhibit chaotic behavior as well. These characteristics have 

recently been used to improve optimization algorithms efficiency [34].  

Integrating chaos theory into population-based algorithms is one of the cheapest methods for 

improving both discovery and exploitation, according to the literature [35-37]. The chaotic SSA 

algorithm combines the local search ability of the chaos operator (CS) and the global search 

ability of the SSA algorithm [38]. This is the motivation of this study whereby we employ 

various chaotic maps to improve the performance of the SSA algorithm. In this study, chaotic 

maps are employed to adjust a random c2 parameter of SSA. These chaotic SSA algorithms are 

shown in Table 1. 
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Table 1. Chaotic maps for SSA algorithm applied. 

No. Algorithms Ref. Mathematic equation 

1 Chaotic-Gauss -SSA  [39] 𝑐𝑘+1 = {

                  1           𝑥𝑘 = 0                      
1

𝑚𝑜𝑑(𝑥𝑘 , 1)
      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

2 Chaotic-Logistic-SSA [40] 𝑥𝑘+1 = 𝛼𝑥𝑘(1 − 𝑥𝑘) 

3 Chaotic-Tent-SSA  [41] 𝑐𝑘+1 = {
          

𝑥𝑘

0.7
      ,   𝑥𝑘 < 0.7                      

10

3
(1 − 𝑥𝑘) ,   𝑥𝑘 ≥ 0.7

 

4 Chaotic-Sine-SSA  [42] 𝑐𝑘+1 =
𝛼

4
sin(𝜋𝑥𝑖) 

5 Chaotic-Singer-SSA  [43] 𝑐𝑘+1 = µ(
7.86𝑥𝑘 − 23.31𝑥𝑘

2 +

28.75𝑥𝑘
3 − 13.302875𝑥𝑘

4) 

 

The steps of chaotic SSA can be described by the flowchart shown in Figure 1. 

  

Fig. 1. Flowchart of the proposed chaotic SSA algorithm. 
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Different time-varying updating strategies for the random values in various chaotic SSA 

algorithms are traced in Figure 2.  

The variance of the random value varies according to the trajectory of each applied chaotic 

method, as seen in the equations of Table 1, with all methods varying from 0 to 1 in nearly 

every iteration except for the Gauss method. 

 

 

Fig. 2. The random variation for different chaotic SSA applied. 

 

 

4. Results and discussion  

 

Figure 3 is represented the standard IEEE 69 bus EDS test system. The base MVA and the bus 

voltage are 10 MVA and 12.66 kV. The proposed chaotic SSA algorithms are implemented in 

MATLAB.  

The five EV charging stations are installed in buses number 18, 26, 31, 43, and 62 with 

maximum power injected is 327 kW, and with a power factor of 0.82. 
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Fig. 3. Single line diagram of the distribution test system with EV charging stations. 

 

For solving this problem, the EDS is assumed to follow a daily load power demand EV charging 

station curves as shown in Figures 4 and 5, respectively.  The power outputs of PV-based DG 

are assumed to follow the nominalized average output curve shown in Figure 6. 

               

       Fig. 4. Daily load demand variation.                Fig. 5. Daily EV charging station variation. 

 

 

Fig. 6. The daily power output of PV-DG variation.  
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4.1 Assessment of the competitive algorithms   

 

Figure 7 shows the convergence curve for the MOF minimization, where the best execution 

results for all chaotic SSA algorithms applied are used.  

 

Fig. 7. Convergence curves for various algorithms. 

As shown in Figure 7, all algorithms converge quickly within 90 iterations, it is clear that the 

chaotic logistic-SSA algorithm converges quickly compared to other algorithms, in less than 

65 iterations, but it is observed that the chaotic sine-SSA algorithm exhibit the best results of 

MOF value. 

Figure 8 illustrates the boxplot of MOF while using different chaotic SSA algorithms for the 

EDS test system. 
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Fig. 8. Boxplot of MOF for various algorithms. 

The boxplot shows that all the proposed chaotic algorithms converged to near to their best 

results of MOF obtained in each of all the 20 executions. Other observations indicate that among 

the proposed algorithms the minimum value of MOF is obtained for the chaotic sine-SSA. 

 

4.2 Statistical analysis of applied algorithms  

 

Table 2 is represented the mean, best, and worst results of MOF as well as, the rank of the 

proposed algorithms after integration of DG. The Chaotic-Sine-SSA algorithm has the best 

result of MOF which proves the efficiency of this algorithm compared to others, this is what 

made it be in rank 1.   

Table 2. Statistical assessment for the competitive algorithms.  

Algorithms Applied Mean Best Worst 
CPU Time 

(sec) 
Rank 

Chaotic-Gauss -SSA 382.7443 379.3266 384.2383 478.32594 5 

Chaotic-Logistic-SSA 379.4699 377.3298 380.6880 478.56920 4 

Chaotic-Tent-SSA 377.4662 377.1886 380.2597 484.71273 3 

Chaotic-Singer-SSA 378.6962 376.2044 379.8982 417.89554 2 

Chaotic-Sine-SSA 371.4342 371.0306 376.0256 428.66019 1 

  

4.3 Optimal results    

 

The optimization results of the proposed various chaotic SSA algorithms are represented in 

Table 3. 
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Table 3. Optimization results for various algorithms. 

Parameters 
Chaotic-

Gauss -SSA 

Chaotic-

Logistic-SSA 

Chaotic-

Tent-SSA 

Chaotic-

Singer-SSA 

Chaotic-

Sine-SSA 

PDG (MW) 

1.1263 

1.4337 

1.8357 

0.7786 

0.3545 

1.8234 

0.7423 

0.3838 

1.8388 

0.4136 

0.7778 

1.8252 

0.7192 

0.4015 

1.8363 

DG Buses 18-47-61 17-26-61 18-26-61 14-22-61 18-26-61 

∑ PDG (MW) 4.3957 2.9565 2.9649 3.0166 2.9570 

∑ PLoss (kW) 3188.2 3175.9 3171.0 3179.3 3172.6 

∑ QLoss (kVar) 1469.4 1467.1 1465.0 1466.9 1465.8 

∑ Vmin (p.u.) 22.6218 22.6185 22.6226 22.6217 22.6216 

∑ TVV (p.u.) 35.8971 35.8319 35.8171 35.8208 35.8284 

∑ ALC (M.$) 1.6757 1.6693 1.6667 1.6710 1.6675 

MOF 379.3266 377.3298 377.1886 376.2044 371.0306 

 

As depicted in Table 3, the best placement obtained by the chaotic sine-SSA algorithm are buses 

18, 26, and 61 with a total size of 2.9570 MW, in addition, except for the chaotic gauss-SSA 

algorithm, the total sizes obtained by the other algorithms are very close, which are vary 

between 2.9565 MW, and 3.0166 MW, with a difference of 6.01 kW.  

Moreover, the best results are obtained by the chaotic-sine-SSA algorithm, which minimizes 

the sum of PLoss to 3.1726 MW, in addition, the sum, of QLoss, TVV, and ALC is minimized to 

1465.8 kVar, 35.8284 p.u., 1.6675 M.$ respectively. On the other hand, the chaotic (gauss, 

logistic, tent, and singer) SSA algorithms recorded the sum of total power losses of 3188.2, 

3175.9, 3171.0, and 3179.3 MW. The sum of minimum voltage is obtained for the chaotic-sine-

SSA algorithm with 22.6216 p.u. 

 

4.4 Impacts on the electrical distribution system   

 

Figure 9 represents the daily variation of the PLoss in 24 hours for different case studies. From 

this 3 D graphic, it is clear that the presence of EVCS has a significant influence on the EDS, 

which leads to an increase in the power losses compared to a basic case especially in buses 7 to 

22, and the buses 53 to 64. Where the PLoss is close to 20 kW in bus number 10. On the contrary, 

the integration of DG leads to reduce the losses of all buses, where the maximum power loss is 

minimized from 74.0938 kW to 46.2396 kW. 

Figure 10 represents the daily voltage profiles of EDS in 24 hours for different case studies. 

From this figure, the best voltage profiles are obtained in the case of EVCS and DG, which is 

within the permissible limits especially when in the hours when the DG provide their better 

active power (noted that these hours are between 8:00 to 18:00).  
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In addition, the presence of EVCS only leads to minimizing the voltage profiles compared to 

the basic case that is due to the importance of active and reactive load of EVCS which is 327 

kW, and 268.14 kVar, respectively. 

               

                                   (a)                                                                             (b) 

 

   (c) 

Fig. 9. The daily APL for EDS: a). Basic Case, b). With EVCS, c). With EVCS and DGs. 

 

 

 

             

                                    (a)                                                                            (b) 
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    (c) 

Fig. 10. Daily bus voltage profiles for EDS: a). Basic Case, b). With EVCS, c). With EVCS 

and DGs. 

 

Figure 11 illustrates the daily variation of total power losses of EDS for different case studies. 

From Figure 11.a. the presence of EVCS in EDS increase the PLoss in all the hour of the day 

which is become close to 430 kW at 15 h after it was 220 kW. But after the integration of 

multiple DG units, the PLoss value is minimized to less than 155 kW.  From Figure 11.b. Also, 

the existence of EVCS effect on the QLoss, wherein the basic case the maximum QLoss was in the 

range of 100 kVar in the hours from 11:00 to 13:00, while the presence of EVCS increases the 

amount of QLoss, which is become more than 140 kVar, whereas the integration of DGs 

significantly reduces the QLoss, which is becoming less than 80 kVar. In addition, due to the 

uncertainty of DG there is no variation in the power losses in the hour between 23:00 to 5:00. 

On the other hand, the minimum PLoss and QLoss are obtained at 13 h because in this hour the 

DG supplied their maximum power injected to EDS. 

 

                   

                                   (a)                                                                               (b) 

Fig. 11. The total power losses in 24 h of EDS: a). PLoss, b). QLoss. 
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5. Conclusions  

 

This paper addresses the planning optimal location and size of PV based-DG units in EDS with 

the presence of EVCS by taking into consideration the uncertainties in 24 hours using different 

chaotic SSA algorithms.  

The results obtained show that the allocation and sizing of PV-DG units reduce the power losses 

and enhance the voltage profile. The simulation results proved the efficiency and robustness of 

the chaotic sine SSA algorithm compared with other various chaotic SSA algorithms in terms 

of achieving minimum PLoss, TVV, and ALC values. 

Future work will consider developing the multi-objective CSSA algorithm for more 

complicated scenarios including the variation of loadability, harmonics source, and the impact 

of hourly variation of hybrid DG power-based technic, economic and environmental aspects. 

 

Nomenclature 

EDS Parameters: 

KP Incremental cost of power loss (0.06 $/kW) 

Nbus Number of buses  

PD, QD Active and reactive power of load  

PG, QG Active and reactive power of generator 

Pi, Qi Active and reactive power at bus  

Pij, Qij Active and reactive power in branch 

PLoss, QLoss Total power losses of EDS  

Rij, Xij Resistance and reactance line  

Sij  Apparent power in branch 

T Number of hours per year (8760 h)  

Vi, δi Voltage magnitude and angle at bus  

Vmin, Vmax Limit of bus voltage 

ΔVmax Maximum voltage drops at each branch 

 

PV based DG Parameters: 

DGPosition, NDG Position and number of DG units 

nDG, i Location of DG units at bus i 

PDG Active power injection from DG  

PDG
min, PDG

max Limit size of DG 

 

Chaotic SSA Parameters: 

c1 Random of the first balance coefficient 

c2 Random number adjusted by chaotic maps 

c3 Random number 

Fi Place of food source 

k, kmax Current and maximum iterations  

N Number of salp particles 
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ubi, lbi Upper and lower bounds 

Xi
1 Leader’s position  

Xi
k Position of salp  
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