Estimating solar radiation in a clear sky on a horizontal surface from common meteorological data in Oran, Algeria

Fodhil Lantri 1 *, Nour El Islam Bachari 2 † and Ahmed Hafid Belbachir 1

1 Department of Physical Engineering, Faculty of Physics
University of Science and Technology Mohamed-Boudiaf, El Mnaouar, B.P. 1505, Bir El Djir, 31000, Oran, Algeria
2 Faculty of Biological Sciences, University of Science and Technology U.S.T.H.B., Alger, Algeria

(reçu le 20 Février 2019 - accepté le 20 Mars 2019)

Abstract - This study aimed to calibrate existing model (Platt and Paltridge model) and develop a new models for estimating the different components of the solar radiation on a horizontal surface in a clear sky data using commonly and available measured meteorological records such as water vapor tension and temperature, etc. Four models based on meteorological variables were generated and validated using daily data in 2013-2016 at the Oran Station (Algeria). Validation criteria included coefficient of determination, root mean square error and mean bias error, the results showed that the proposed models can estimate solar radiation values. The model based on the temperature and the water vapor tension gives better results with statistical errors obtained are as follows: NDMBE = 13.36 %, NDRMSE = 47.08 % and the correlation coefficient R = 0.85 for the diffused component, the model based on relative humidity and atmospheric pressure gives better results for the direct component with statistical errors obtained are: NDMBE = -1.54 %, NDRMSE = 22.59 % and the correlation coefficient R = 0.95 and The model based on the relative humidity and the water vapor tension with results: NDMBE = 0.96 %, NDRMSE = 12.08 % and the correlation coefficient R = 0.98 for the global component.

1. INTRODUCTION

Algeria is a vast country with an area of 2.3×10^6 km2. Since the 1930s, weather stations have been established.

* fodhil2009@yahoo.fr
† bacharinouri@gmail.com
On the other hand, the measurements of the solar radiation components are nonexistent and if they exist, they have very long time gaps. Algeria wants to further develop renewable energies to benefit from strong solar insolation.

The estimation of solar radiation components in the clear sky is important to estimate the maximum distributed on the national territory. Faced with this demand and lack of data, several researchers have proposed the use of satellite imagery (Bachari, 2001) [1]; (Bouchouicha, 2016) [2]; (Rezzagui; 2017) [3]. This technique presents an effective solution, but it totally depends on the presence of database of the satellite images on the one hand, and on the other hand it does not allow the estimation of the direct radiation and diffused radiation.

Therefore, it is interesting to use physical methods to estimate solar radiation using meteorological data [4-12]. Lantri and Bachari, 2017 [13] based on the model of Platt and Paltridge in 1983 a software, SHAMS, have been developed to allow the estimation of different components of solar radiation based on meteorological data.

The proposed model is based on the following meteorological parameters: visibility (Vis), atmospheric pressure (P) and relative humidity (H). Among the constraints found was the lack of measured data. This lack of data directly translated by non-estimation of the components of the radiation. To remedy this problem we are interested in asking the following question:

Is it possible to estimate the different components of solar radiation using other meteorological parameters?

In this work we propose an adjustment of the model of Platt and Paltridge to estimate the different components of the solar radiation by proposing several variants according to the different meteorological variables.

2. EXPERIMENTAL

The model (Model1) presented below is a model based on the three meteorological variables: atmospheric pressure, relative humidity and visibility.

2.1 Calculation of irradiance due to direct radiation

The basic expression for total direct transmission has been suggested by Partridge and Platt [14]. According to them, the normal direct irradiance to medium distance Earth-Sun can be written

\[
\hat{I}_n = \hat{I}_{sc} \left(\tau_{oz} \tau_r - \alpha_w \right) \tau_a
\]

\(\hat{I}_n\), Direct solar irradiance, W/m²; \(\hat{I}_{sc}\), Solar constant, W/m²; \(\tau_{oz}\), Transmittance coefficient after absorption by ozone; \(\alpha_w\), Absorption of direct radiation by water vapor.

\[
\alpha_w = \frac{(2.9.\ U_w)}{\left((1 + 141.5.\ U_w)^{0.635} + 5.925.\ U_w \right)}
\]

\(U_w\), The condensable water thickness is corrected by optical path of radiation through this layer, and is given by the following relation [cm].

\[
U_w = W \times m_r
\]

\(W\), The condensable water height, given by the following relation,

\[
W = HR \times \left(P / 1013.15 \right)
\]
m_r, Relative optical path; HR, Relative humidity, %; P, Atmospheric pressure, mb;
\(\tau_r \), The transmittance coefficient after molecular diffusion or Rayleigh. Davies et al. [15] have taken these words and presented the following relation:

\[
\tau_r = 0.972 - 0.08262.m_a + 0.00933.m_a^2 - 0.00095.m_a^3 + 0.000437.m_a^4
\]

(5)

\(m_a \), Air mass corrected by the pressure. The relation expressing this parameter is given by:

\[
m_a = m_r \times (P / 1013.25)
\]

(6)

\(\tau_a \), The transmittance coefficient after aerosol diffusion proposed by Mächler [16]. It is given by the following relation:

\[
\tau_a = \left(0.97 - 1.265 \times (VIS)^{-0.66}\right) m_a^{0.9}
\]

(7)

\(VIS \), Visibilité (5 < VIS < 180), km

2.2 Calculation of illumination due to diffuse radiation

Illumination due to diffuse radiation on a horizontal surface is calculated by the following relationship:

\[
\hat{I}_d = \hat{I}_{dr} + \hat{I}_{da} + \hat{I}_{dm}
\]

(8)

\(\hat{I}_d \), Diffuse solar irradiance, W/m²; \(\hat{I}_{dr} \), Illumination due to the radiation scattered by the different molecules of air, W/m²; \(\hat{I}_{dm} \), Illumination due to the scattered radiation by multi-reflections earth-atmosphere, W/m²; \(\hat{I}_{da} \), Illumination due to the radiation diffused by the aerosols, W/m²;

(9)

\(\theta_z \), Zenital angle, °; \(\rho_g \), Ground albedo; \(\rho_a \), Sky, or atmospheric albedo, without clouds. The latter is calculated by:

\[
\rho_a = 0.0685 + 0.17 \times (1 - \tau_a) W_0
\]

(10)

\(W_0 \), Albedo of dispersion of the atmosphere.

\(\tau_a \), The transmittance coefficient after aerosol diffusion must be calculated by the air mass

\[
m_a = 1.666 \times (P / P_0)^3
\]

(11)

\(P_0 \), Atmospheric pressure of the level of the sea (1013 mb).

2.3 Illumination due to global radiation

In this model, the illumination due to global radiation is calculated by the following relation:

\[
\hat{I} = \hat{I}_n \times \cos \theta_z + \hat{I}_d
\]

(12)

\(\hat{I} \), Global solar irradiance, W/m²

2.4 Model reformulation technique
In this section, we will present the laws and relationships that allow us to substitute a meteorological variable with another one and generate new relationships linking the different meteorological variables to one another.

2.4.1 Behavior of the air (gas mixture).

The experiments on the air show that it behaves like a perfect gas at low pressures. That is, at low pressures, the air state variables are related to the ideal gas state equation. The Gay-Lussac law [17] stipulates that at constant volume \(V \), the pressure of a perfect gas is directly proportional to the absolute temperature (expressed in K), for the same quantity of gas in two state temperatures \((T_0, T) \) and pressures \((P_0, P) \) at the same volume:

\[
\frac{P_0}{T_0} = \frac{P}{T}
\]

So,

\[
T = \frac{273.15 \times P}{1013} \times 25 \tag{13}
\]

\[
P = \frac{1013.25 \times P}{273} \times 15 \tag{14}
\]

2.4.2 Relative humidity

Cloud formation usually begins as soon as the initially moist air becomes saturated with liquid water. It is conceivable then that the chances of cloud formations are even bigger as the air is close to saturation. It is then interesting to be able to estimate this proximity of the saturation. The relative humidity \((hr) \) gives us this information:

\[
hr = \frac{P_w}{P_s(T)} \times 100
\]

The relative humidity is usually given as a percentage and is represented by \(HR \) [18]:

\[
HR = 100 \times hr = 100 \times \left(\frac{P_w}{P_s(T)}\right) \tag{15}
\]

\(P_w \) = Water vapor tension (partial pressure of the water vapor) [hPa]

\(P_s(T) \) = Saturated water vapor tension at \(T \) given according to the temperature by [hPa]:

\[
P_s(T) = 6.1078 \times \exp\left(17.269 \times \frac{T}{237.3 + T}\right) \tag{16}
\]

2.4.3 The new relationships

2.4.3.1 Relative humidity as a function of the temperature and the water vapor tension

From equations (15) and (16) we have:

\[
HR = 16.3725 \times P_w \times \left(\exp\left(17.269 \times \frac{T}{237.3 + T}\right)\right)^{-1}
\]

After simplification we find:

\[
HR = 5.18 \times 10^{-7} \times P_w \times \exp\left(4097 \times \frac{9337}{237.3 + T}\right) \tag{17}
\]

3.1.3.2 Relative humidity as a function of the pressure and the water vapor tension
From equations (15) and (16) we have:

\[
\text{HR} = 5.18 \times 10^{-7} \times P_w \times \exp\left(\frac{4097 \times 9337}{237.3 + \left(273.15 \times \left(P/1013\right)\right)^{25}}\right)
\]

After simplification we find:

\[
\text{HR} = 5.18 \times 10^{-7} \times P_w \times \exp\left(15201 \times \frac{2862}{880.2644 + P}\right)
\]

(18)

2.4.3.3 Temperature as a function of the relative humidity and the water vapor tension

From equation (17) we have:

\[
\text{Exp}\left(\frac{4097 \times 9337}{237.3 + T}\right) = \frac{\text{HR}}{5.18 \times 10^{-7} \times P_w}
\]

After simplification we find:

\[
T = 4097 \times 9337 \times \left(\ln\left(\frac{\text{HR}}{5.18 \times 10^{-7} \times P_w}\right)\right)^{-1} - 237.3
\]

(19)

2.4.3.4 Pressure as a function of the relative humidity and the water vapor tension

From equations (19) and (13) we have:

\[
\frac{273.15 \times P}{1013^{25}} = 4097 \times 9337 \times \left(\ln\left(\frac{\text{HR}}{5.18 \times 10^{-7} \times P_w}\right)\right)^{-1} - 237.3
\]

After simplification we find:

\[
P = 15201 \times 2862 \times \left(\ln\left(\frac{\text{HR}}{5.18 \times 10^{-7} \times P_w}\right)\right)^{-1} - 880.2644
\]

(20)

2.5 New Models

As we saw earlier, the initial model is based on atmospheric pressure, relative humidity and visibility; we substitute one or two meteorological variables each time with new ones, with the exception of visibility. And the relations concerned with the substitution are:

The condensable water height

\[
W = \text{HR} \times \left(\frac{P}{1013^{25}}\right)
\]

(21)

Air mass corrected by pressure

\[
m_a = m_r \times \left(\frac{P}{1013^{25}}\right)
\]

(22)

Air mass

\[
m_a = 1.666 \times \left(P / P_0\right)^3
\]

(23)

2.51 Model 2 (based on velocity, relative humidity and temperature
For \{\text{Eq. (14)}\} and \{\text{Eq. (4)}\}, we have
\[W = \text{HR} \cdot \left(\frac{T}{273.15}\right) \]
(24)

For \{\text{Eq. (14)}\} and \{\text{Eq. (6)}\}, we have
\[m_a = m_r \cdot \left(\frac{T}{273.15}\right) \]
(25)

For \{\text{Eq. (14)}\} and \{\text{Eq. (11)}\}, we have
\[m_a = 1.666 \times \left(\frac{T}{273.15}\right)^3 \]
(26)

2.52 Model 3 (based on velocity, relative humidity and water vapor pressure)

For \{\text{Eq. (20)}\} and \{\text{Eq. (4)}\}, we have
\[W = \text{HR} \cdot \left(15 \times \left(\ln\left(\frac{\text{HR}}{(5.18 \times 10^{-7} \times P_w)}\right)\right)^{-1} - 0.8687\right) \]
(27)

For \{\text{Eq. (20)}\} and \{\text{Eq. (6)}\}, we have
\[m_a = m_r \cdot \left(15 \times \left(\ln\left(\frac{\text{HR}}{(5.18 \times 10^{-7} \times P_w)}\right)\right)^{-1} - 0.8687\right) \]
(28)

For \{\text{Eq. (20)}\} and \{\text{Eq. (11)}\}, we have
\[m_a = 1.666 \cdot \left(15 \times \left(\ln\left(\frac{\text{HR}}{(5.18 \times 10^{-7} \times P_w)}\right)\right)^{-1} - 0.8687\right)^3 \]
(29)

2.53 Model 4 (based on visibility, water vapor pressure and temperature)

For \{\text{Eq. (17)}\} and \{\text{Eq. (4)}\}, we have
\[W = 18.967 \times 10^{-10} \times T \times P_w \times \exp\left(\frac{4097.9337}{237.3 + T}\right) \]
(30)

\[m_a \] and \[m_a^\prime \] are given by \{\text{Eq. (22)}\} and \{\text{Eq. (23)}\} respectively.

2.54 Model 5 (based on visibility, water vapor pressure and pressure)

For \{\text{Eq. (18)}\} and \{\text{Eq. (4)}\}, we have
\[W = 5.1123 \times 10^{-10} \times P \times P_w \times \exp\left(\frac{15201.2862}{880.2644 + P}\right) \]
(31)

\[m_a \] and \[m_a^\prime \] are given by \{\text{Eq. (6)}\} and \{\text{Eq. (11)}\} respectively.

2.6 Statistical Formulas

2.6.1 Statistical errors

Widely used statistical errors [19] are biased mean error (MBE) and mean squared error (RMSE).
Percentage deviations or a fraction of the estimated value from the measured value and the mean relative error \(\text{(MERR)}\) defined as follows:

2.6.1.1 Average error

\[
\text{MBE} = \left(\frac{\sum_{i=1}^{n}(H_{ci} - H_{mi})}{n} \right)
\]

or in percentage

\[
\text{NDMBE} = \left(\frac{\left(\frac{\sum_{i=1}^{n}(H_{ci} - H_{mi})}{n} \right)}{n} \right) \times \left(\frac{100}{H_m} \right)
\]

The mean error (MBE or NDMBE) gives an indication of an underestimate or an overestimate [20] of the model in relation to the measures; it is negative if the model is underestimated, conversely, if it is overestimated.

2.6.1.2 Mean quadratic error

\[
\text{RMSE} = \left(\frac{\sum_{i=1}^{n}(H_{ci} - H_{mi})^2}{n} \right)^{1/2}
\]

or in percentage

\[
\text{NDRMSE} = \left(\frac{\left(\frac{\sum_{i=1}^{n}(H_{ci} - H_{mi})^2}{n} \right)}{n} \right)^{1/2} \times \left(\frac{100}{H_m} \right)
\]

Root mean squared error (RMSE or NDRMSE) represents the reliability of the models. RMSE is even smaller as the model gets closer to the measurement results.

2.6.2 Coefficient of correlation (R)

The Correlation coefficient [21] can be used to determine the linear relationship between measured values and estimated values, which can be calculated by the following equation

\[
R = \frac{\sum_{i=1}^{n}(H_{ci} - H_c) \times (H_{mi} - H_m)}{\left(\sum_{i=1}^{n}(H_{ci} - H_c)^2 \times \sum_{i=1}^{n}(H_{mi} - H_m)^2 \right)^{1/2}}
\]

The indicator varies between -1 and 1. A value of 1 or close to 1 indicates a perfect agreement between the measured and calculated value. A value of -1 or close to -1 indicates a perfect inverse relationship between the measured and calculated value. On the other hand, a value close to 0 indicates a total disagreement.

3. RESULTS AND DISCUSSION

3.1 The data used

The data used in this work relate to an Algerian site, Oran. Thus, the geographical characteristics of this site are given in the following table:

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude (°)</th>
<th>Longitude (°)</th>
<th>Altitude (m)</th>
<th>Period of comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORAN</td>
<td>35.63</td>
<td>0.6</td>
<td>90</td>
<td>2013-2014-2015-2016</td>
</tr>
</tbody>
</table>

3.2 The seasonal scale
Table 2: Statistical errors of different components for each season of the year.

<table>
<thead>
<tr>
<th>Components</th>
<th>Models</th>
<th>Errors</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NDRMSE (%)</td>
<td>21.63</td>
<td>5.59</td>
<td>9.55</td>
<td>16.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDMBE (%)</td>
<td>-4.83</td>
<td>1.34</td>
<td>6.52</td>
<td>4.55</td>
</tr>
<tr>
<td></td>
<td>Model 2</td>
<td>NDRMSE (%)</td>
<td>21.78</td>
<td>5.58</td>
<td>8.57</td>
<td>16.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDMBE (%)</td>
<td>-5.44</td>
<td>0.34</td>
<td>5.14</td>
<td>3.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDRMSE (%)</td>
<td>21.77</td>
<td>5.61</td>
<td>8.2</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDMBE (%)</td>
<td>-5.41</td>
<td>0.08</td>
<td>4.56</td>
<td>3.51</td>
</tr>
<tr>
<td></td>
<td>Model 3</td>
<td>NDRMSE (%)</td>
<td>24.28</td>
<td>10.52</td>
<td>8.95</td>
<td>16.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDMBE (%)</td>
<td>-10.98</td>
<td>-7.24</td>
<td>-3.9</td>
<td>-3.46</td>
</tr>
<tr>
<td></td>
<td>Model 4</td>
<td>NDRMSE (%)</td>
<td>42.45</td>
<td>50.85</td>
<td>35.34</td>
<td>61.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDMBE (%)</td>
<td>17.54</td>
<td>28</td>
<td>-4.81</td>
<td>37.78</td>
</tr>
<tr>
<td></td>
<td>Model 1</td>
<td>NDRMSE (%)</td>
<td>27.3</td>
<td>17.6</td>
<td>23.03</td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDMBE (%)</td>
<td>-9.51</td>
<td>-6.57</td>
<td>10.72</td>
<td>-2.93</td>
</tr>
<tr>
<td></td>
<td>Model 2</td>
<td>NDRMSE (%)</td>
<td>28.07</td>
<td>19.63</td>
<td>21.36</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDMBE (%)</td>
<td>-11.03</td>
<td>-9.6</td>
<td>6.03</td>
<td>-5.18</td>
</tr>
<tr>
<td></td>
<td>Model 3</td>
<td>NDRMSE (%)</td>
<td>28.05</td>
<td>20.22</td>
<td>20.97</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDMBE (%)</td>
<td>-10.97</td>
<td>-10.37</td>
<td>4.11</td>
<td>-5.54</td>
</tr>
<tr>
<td></td>
<td>Model 4</td>
<td>NDRMSE (%)</td>
<td>31.81</td>
<td>25.33</td>
<td>21.63</td>
<td>27.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDMBE (%)</td>
<td>-16.5</td>
<td>-16.72</td>
<td>-3.51</td>
<td>-12.01</td>
</tr>
<tr>
<td></td>
<td>Model 5</td>
<td>NDRMSE (%)</td>
<td>24.86</td>
<td>15.38</td>
<td>27.26</td>
<td>23.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDMBE (%)</td>
<td>-2.21</td>
<td>0.15</td>
<td>17.66</td>
<td>4.42</td>
</tr>
<tr>
<td></td>
<td>Model 1</td>
<td>NDRMSE (%)</td>
<td>43.82</td>
<td>53.3</td>
<td>35.85</td>
<td>64.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDMBE (%)</td>
<td>19.35</td>
<td>30.72</td>
<td>-3.38</td>
<td>40.44</td>
</tr>
<tr>
<td></td>
<td>Model 2</td>
<td>NDRMSE (%)</td>
<td>47.52</td>
<td>58.73</td>
<td>36.32</td>
<td>69.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDMBE (%)</td>
<td>23.39</td>
<td>37.24</td>
<td>3.01</td>
<td>46.11</td>
</tr>
<tr>
<td></td>
<td>Model 3</td>
<td>NDRMSE (%)</td>
<td>47.61</td>
<td>60.23</td>
<td>36.88</td>
<td>70.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDMBE (%)</td>
<td>23.31</td>
<td>38.92</td>
<td>5.62</td>
<td>47.13</td>
</tr>
<tr>
<td></td>
<td>Model 4</td>
<td>NDRMSE (%)</td>
<td>42.45</td>
<td>50.85</td>
<td>35.34</td>
<td>61.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDMBE (%)</td>
<td>17.54</td>
<td>28</td>
<td>-4.81</td>
<td>37.78</td>
</tr>
<tr>
<td></td>
<td>Model 5</td>
<td>NDRMSE (%)</td>
<td>50.21</td>
<td>60.3</td>
<td>36.79</td>
<td>72.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDMBE (%)</td>
<td>26.61</td>
<td>38.63</td>
<td>1.77</td>
<td>48.92</td>
</tr>
</tbody>
</table>

Table 2 shows the statistical results obtained from all models for each season of the year, through the table, we observe the following

3.2.1 Winter- We find that all models underestimate the measurements of both components (direct and global), except in the case of model 5 in the global component that overestimate the measurements of the diffuse component.

We note that the lowest quadratic error value corresponds to model 1 for the global component, model 5 for the direct component and model 4 for the diffuse. The NDRMSE values are equal to 21.63 %, 24.86 % and 42.45 % respectively.

3.2.2 Spring- We find that all the selected models overestimate the measures for both components (diffuse and global), except in the case of model 4 of the global component that underestimate the measures for the direct component; and in the case of model 5 that overestimates the measurements of the diffuse component.
We note that the lowest quadratic error value corresponds to model 2 for the global component, model 5 for the direct component and model 4 for the diffuse. The NDRMSE is equal to 5.58 %, 15.38 % and 50.85 % respectively.

3.2.3 Summer- We note that model 4 underestimates the measurements of the three components, models 1 and 5 respectively underestimate the measurements in the diffuse and global components and models 2 and 3 overestimate the measurements of the three components.

In the case of a direct component, the mean squared error (NDRMSE) is smaller for model 3; and this value is equal to 20.97 %.

In the case of a diffuse component, (NDRMSE) is lower for model 4 and its value is equal to 35.34 %. As for the global component, model 3 has a value of (NDRMSE) equal to 8.2 %.

3.2.4 Autumn- We find that all the chosen models overestimate the measures for both components (diffuse and global), except for model 4 in the global component that underestimate the measures for the direct component; and for model 5.

In the case of a direct component, the mean squared error (NDRMSE) is lower for model 5, and this value is equal to 23.36 %. In the case of a diffuse component, (NDRMSE) is lower for model 4 and its value is equal to 61.74 %; and for the global component, model 3 is with a value of (NDRMSE) equal to 16.3 %.

We can note that the best estimates for the global and direct components relate to spring and summer; and in the case of diffuse component the best estimates in winter and summer.

3.3 The annual scale

Table 3: Coefficient of correlation R between the measured and calculated values for three components of solar radiation for each mode

<table>
<thead>
<tr>
<th>Component</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Direct</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>Diffuse</td>
<td>0.85</td>
<td>0.86</td>
<td>0.86</td>
<td>0.85</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Fig. 1: Errors NDMBE and NDRMSE of daily solar radiation for each mode (direct component)
Figure 1, figure 2 and figure 3 illustrate the statistical errors of different components of daily solar radiation for each mode, through these figures, we observe the following.

3.3.1 Direct- We find that all the selected models underestimate the measures, except in the case of the model 5 where the measures are overestimated. We note that the lowest quadratic error value corresponds to model 1. The NDRMSE is equal to 22.59 %.

3.3.2 Diffuse- We find that all the models overestimate the measurements. We note that the lowest quadratic error value corresponds to model 4. The NDRMSE is equal to 47.08 %

3.3.3 Global- We find that all the selected models overestimate the measures, except in the case of model 4. We note that the lowest squared error value corresponds to model 3 and is equal to 12.08 %.

Table 3 shows that there is a strong correlation between the measured and calculated values of the global and direct components and a lower value for the diffuse component for all models.

4. CONCLUSION

In the absence of radiation data, reliable estimates can be made from easily available meteorological observations of temperature, relative humidity etc....
In this study, using the Oran station (Algeria) as a case study, one model exist and Four proposed models were calibrated and evaluated using the daily meteorological data from January 2013 to December 2016 for estimating the different components of the solar radiation on a horizontal surface in a clear sky.

From the previous study we propose a strategy for selecting an optimal method, for estimating daily components of solar radiation in Oran: for estimated the direct component, we use Model 1 (based on relative humidity and atmospheric pressure); when to estimated the diffused component, we use Model 4 (based on the temperature and the water vapor tension) and use Model 3 (based on the relative humidity and the water vapor tension) for estimated the global component.

Through all of the above we conclude, that in the case of gaps in measurements of a meteorological variable can be calculated or replace with other meteorological variables with ease, but the performance of the new variables varies according to the seasons of the year as well as the component to be estimated.

REFERENCES

