Numerical study to predict optimal configuration of wavy fin and tube heat exchanger with various tube shapes

Main Article Content

Farouk Tahrour
Fares Djeffal
Lyes Bordja
Abdelmoumene Hakim Benmachiche

Abstract

This paper aims to investigate the influence of tube shapes on thermal-flow characteristics of sinusoidal wavy finned-tube heat exchangers. Two row staggered bundle with six geometries of tubes (four flat tube geometries, one oval tube and a circular tube) are analyzed for a range of (1600 mceclip1.png Re mceclip2.png 4800). The inspection revealed that the heat flux and the pressure drop decrease with the tube flatness for all Reynolds values. However, the oval tube O1 reaches, for all Reynolds values, the lowest values of heat flux and pressure drop. Regarding the global performance criterion, the sinusoidal wavy fins with O1 shaped tubes reached the highest global performance values, being 14.8–24.4% and 31.6–36.3% higher than the fin with F1 and O2 tube geometry, respectively.

Article Details

How to Cite
[1]
F. . Tahrour, F. . Djeffal, L. . Bordja, and A. H. . Benmachiche, “Numerical study to predict optimal configuration of wavy fin and tube heat exchanger with various tube shapes”, J. Ren. Energies, vol. 1, no. 1, pp. 219 -, Jun. 2022.
Section
special

References

Zeeshan M, Nath S, Bhanja D. Numerical study to predict optimal configuration of fin and tube compact heat exchanger with various tube shapes and spatial arrangements. Energy Conversion and Management 2017; 148:737–16. doi:10.1016/j.enconman.2017.06.011.

Xie G, Wang Q, Sunden B. Parametric study and multiple correlations on air-side heat transfer and friction characteristics of fin-and-tube heat exchangers with large number of large-diameter tube rows. Appl. Thermal Engin 2009;29:1-16. doi:10.1016/ j.applthermaleng. 2008.01.014.

Kumar A, Joshi JB, Nayak AK, Vijayan PK. 3D CFD simulations of air cooled condenser-III: Thermal-hydraulic characteristics and design optimization under forced convection conditions. Heat Mas Transf 2016; 93:1227-21. doi:10.1016/j.ijheatmasstransfer.2015. 10.048.

Kumar A, Joshi JB, Nayak AK. A comparison of thermal-hydraulic performance of various fin patterns using 3D simulations. Int. J. Heat Mass Transf 2017; 109:336–21. doi:

1016/j.ijheatmasstransfer.2017.01.102.

Unger S, Beyer M, Gruber S, Willner R, Hampel U. Experimental study on the air-side thermal-flow performance of additively manufactured heat exchangers with novel fin designs. International Journal of Thermal Sciences 2019; 146:106074. doi:10.1016/j.ijthermalsci. 2019.106074.

Zhang L, Tian L, Zhang A, Chen H. Effects of the shape of tube and flow field on fluid flow and heat transfer. Int. Commun. Heat Mass Transf 2020; 117:104782. doi:10.1016/j. icheatmasstransfer.2020.104782.

Brenk A, Kielar J, Malecha Z, Rogala Z. The effect of geometrical modifications to a Shell and tuve heat exchanger on performance and freezing risk during LNG regasification. Int. J. Heat Mass Transf 2020; 161:120247. doi:10.1016/j.ijheatmasstransfer.2020.120247.

Fiebig M, Valencia A, Mitra NK. Local heat transfer and flow losses in fin-and-tube heat exchangers with vortex generators: A comparison of round and flat tubes. Exp. Therm. Fluid Sci 1994; 8:35-11. doi:10.1016/0894-1777(93)90118-3.

Sun L, Zhang CL. Evaluation of elliptical finned-tube heat exchanger performance using CFD and response surface methodology. Int. J. Therm. Sci 2014; 75:45-9. doi: 10.1016/j. ijthermalsci.2013.07.021.

Djeffal F, Bordja L, Rebhi R, Inc M, Ahmad H, Tahrour F, Ameur H, Menni Y, Lorenzini G, Elagan SK, Jawa TM. Numerical investigation of thermal-flow characteristics in heat exchanger with various tube shapes. Appl. Sci. 2021; 11:9477. doi:10.3390/app 11209477.

Unger S, Krepper E, Beyer M, Hampel U. Numerical optimization of a finned tube bundle heat exchanger arrangement for passive spent fuel pool cooling to ambient air. Nucl. Eng. Des. 2020; 361:110549. doi:10.1016/j.nucengdes.2020.110549.

He S, Zhou X, Li F, Wu H, Chen Q, Lan Z. Heat and mass transfer performance of wet air flowing around circular and elliptic tube in plate fin heat exchangers for air cooling. Heat Mass Transf 2019; 55:3661-13. doi:10.1007/s00231-019-02683-1.

Darbari AM, Alavi MA. Application of Taguchi method in the numerical analysis of fluid flow and heat transfer around a flat tube with various axial ratios. Int. Commun. Heat Mass Transf 2021; 126:105472. doi:10.1016/j.icheatmasstransfer.2021.105472.

Alnakeeb MA, Saad MA, Hassab MA. Numerical investigation of thermal and hydraulic performance of fin and flat tube heat exchanger with various aspect ratios. Alex. Eng. J. 2021; 60:4255–11. doi:10.1016/j.aej.2021.03.036.

Phu NM, Pham BT. Thermohydraulic performance of a fin and inclined flat tube heat exchanger: A numerical analysis. CFD Letters 2021; 13(7):1-12. doi:10.37934/cfdl.13.7.112.

Kong Y, Yang L, Du X, Yang Y. Impacts of geometrical structures on thermo-flow performances of plate fin-tube bundles. International Journal of Thermal Sciences 2016; 107:161-18. doi:10.1016/j.ijthermalsci.2016.04.011.

Youn B, Kim NH, An experimental investigation on the airside performance of fin-and-tube heat exchangers having sinusoidal wave fins. Heat Mass Transfer 2007, 43, 1249-1262. doi:10.1007/s00231-006-0210-y.