Hydrogen fuel cell electric vehicles controlled by direct torque control (DTC) during low-speed operation

Main Article Content

Farid Tazerart
Ahmed Azib
Farid Kerrouche
Toufik Rekioua


Controlling the speed and torque of electric vehicles (EVs) under various road conditions poses a significant challenge with conventional control methods. This paper introduces a novel approach to direct torque control (DTC) by incorporating a self-tuning fuzzy speed controller specifically designed for EV applications. The self-tuning fuzzy proportional-integral-derivative (PID) controller is devised to continually update its output scaling factor. DTC, which directly links torque and speed control to the electromagnetic state of the motor, eliminates the need for a modulator. It performs effectively at high speeds and operates without a speed sensor. However, DTC is typically employed in the medium and low-speed range of electric vehicle propulsion. This paper aims to develop a DTC structure utilizing a self-tuning fuzzy speed controller for driving a fuel cell electric vehicle in low-speed urban scenarios. Simulation results demonstrate that the adaptive fuzzy PI control ensures better efficiency compared to the conventional PI controller, affirming its superior control performance.

Article Details

How to Cite
F. Tazerart, A. . Azib, F. . Kerrouche, and T. . Rekioua, “Hydrogen fuel cell electric vehicles controlled by direct torque control (DTC) during low-speed operation”, J. Ren. Energies, vol. 27, no. 1, pp. 115 -, Jun. 2024.


Abdelli, R., Rekioua, D., & Rekioua, T. (2011). Performances improvements and torque ripple minimization for VSI fed induction machine with DTC. ISA Transactions, 50(2), 213-219. https://doi.org/10.1016/j.isatra.2010.11.008

Armenta-Déu, C., & Arenas, A. (2023). Performance Analysis of Electric Vehicles with a Fuel Cell–Supercapacitor Hybrid System. Engineering, 4(3), 2274-2292. https://doi.org/10.3390/eng4030130

Bayindir, K. C., Gozukucuk, M. A., & Teke, A. (2011). A comprehensive overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques and electronic control units. Energy Conversion and Management, 52(2), 1305-1313. https://doi.org/10.1016/j.enconman.2010.09.028

Benbouhenni, H. (2019). Correcteur du couple à cinq niveaux pour la commande DTC douze secteurs basés sur la logique floue et les réseaux de neurones de la MAS de forte puissance. Journal of Renewable Energies, 22(1), 113-121. https://doi.org/10.54966/jreen.v22i1.731

Bensalah, M., & Harzallah, A. (2023). Modern Improvement Techniques of Direct Torque Control for Induction Motor Drives: A Review. Protection and Control of Modern Power Systems, 8, 52. https://doi.org/10.1186/s41601-023-00276-2

Berabez, K., Hamoudi, F., Idjdarene, K., & Hacini, I. (2023). Fuzzy Logic PI controller based Direct Torque control of a Self-Excited Induction Generator through a three-level Rectifier. Journal of Renewable Energies, 1(1), 1-. https://doi.org/10.54966/jreen.v1i1.1093

Bouguerra, Z. (2023). Comparative study between PI, FLC, SMC and Fuzzy sliding mode controllers of DFIG wind turbine. Journal of Renewable Energies, 26(2), 209-. https://doi.org/10.54966/jreen.v26i2.1146

Boukhalfa, G., Belkacem, S., Chikhi, A., & Benaggoune, S. (2022). Direct torque control of dual star induction motor using a fuzzy-PSO hybrid approach. Applied Computing and Informatics, 18(1/2), 74-89. https://doi.org/10.1016/j.aci.2018.09.001

Burkan, R., & Mutlu, A. (2022). Robust control of robot manipulators with an adaptive fuzzy unmodelled parameter estimation law. Robotica, 40(7), 2365-2380. https://doi.org/10.1017/S0263574721001685

Cao, Y., Yao, M., & Sun, X. (2023). An Overview of Modelling and Energy Management Strategies for Hybrid Electric Vehicles. Applied Sciences, 13(10), 5947. https://doi.org/10.3390/app13105947

De Wolf, D., & Smeers, Y. (2023). Comparison of Battery Electric Vehicles and Fuel Cell Vehicles. World Electric Vehicle Journal, 14(9), 262. https://doi.org/10.3390/wevj14090262

Djermouni, K., Berboucha, A., Ghedamsi, K., Aouzellag, D., & Tamalouzt, S. (2024). Energy Management Applied To Non-Autonomous Photovoltaic Station For Hybrid Vehicle Loading. Journal of Renewable Energies, 1(1), 33-.

El Ouanjli, N., Derouich, A., El Ghzizal, A., et al. (2019). Modern improvement techniques of direct torque control for induction motor drives - a review. Protection and Control of Modern Power Systems, 4, 11. https://doi.org/10.1186/s41601-019-0125-5

Hu, J. S., Yin, D., & Hu, F. R. (2011). A robust traction control for electric vehicles without chassis velocity. In S. Soylu (Ed.), Electric Vehicles - Modelling and Simulations (1st ed., pp. 107-126). Croatia. https://doi.org/10.5772/16942

Huang, B., Su, L., & Ren, Y. (2017). DC/DC Converter Common Mode EMI in Parallel-Series PHEV. Electrotehnica, Electronica, Automatica (EEA), 66(1), 41-46.

Jasthi, K., & Gampa, S. R. (2023). Direct Torque Control of an Induction Motor Using Fractional-Order Sliding Mode Control Technique for Quick Response and Reduced Torque Ripple. World Electric Vehicle Journal, 14(6), 137. https://doi.org/10.3390/wevj14060137

Li, J., Zhu, Y., & Xu, Y. (2014). Research on control strategy optimization in power transmission system of hybrid electric vehicle. Machinery Design & Manufacture, 67(3), 138-141.

Liu, Y., Chen, D., & Lei, Z. (2017). Modeling and control of engine starting for a full hybrid electric vehicle based on system dynamic characteristics. International Journal of Automotive Technology, 18(5), 911-922. https://doi.org/10.1007/s12239-017-0089-2

Mihaescu, M., & Popescu, D. (2018). Simulink modelling of transient operating regimes of a four-port DC-DC converter used in hybrid vehicles. Electrotehnica, Electronica, Automatica (EEA), 66(3), 26-34.

Sayeh, K. F., Tamalouzt, S., Ziane, D., Sahri, Y., Deffaf, B., & Lalouni Belaid, S. (2024). Control of a Wind Turbine based on DFIG by Improved Direct Torque Control using Fuzzy Logic. Journal of Renewable Energies, 1(1), 71-. https://doi.org/10.54966/jreen.v1i1.1173

Tazerart, F., Mokrani, Z., Rekioua, D., & Rekioua, T. (2015). Direct torque control implementation with losses minimization of induction motor for electric vehicle applications with high operating life of the battery. International Journal of Hydrogen Energy, 40(39), 13827-13838. https://doi.org/10.1016/j.ijhydene.2015.04.052

Tazerart, F., Taïb, N., Rekioua, T., Rekioua, D., & Tounzi, A. (2014). Direct torque control optimization with loss minimization of induction motor. In Conférence Internationale en Sciences Technologies Electriques au Maghreb-CISTEM, Tunis. Publisher: IEEE. https://doi.org/10.1109/CISTEM.2014.7077002

Xingzhi, H. (2017). Analysis of Traction Control System in Hybrid Electric Vehicle based on Engine-Motor Coordinated Control Strategy. Electrotehnica, Electronica, Automatica (EEA), 65(3), 42-48. https://doi.org/10.3390/wevj5020460

Yue, H., Lin, J., Dong, P., Chen, Z., & Xu, X. (2023). Configurations and Control Strategies of Hybrid Powertrain Systems. Energies, 16(2), 725. https://doi.org/10.3390/en16020725

Zhang, N., Zhao, F., & Luo, Y. (2014). A dynamic coordinated control strategy for the mode-switch of HEV based on motor speed closed-loop control. Automotive Engineering, 36(2), 134-138. https://doi.org/10.1007/978-3-642-33777-2_34

Zidane, N., & Lalouni Belaid, S. (2024). Energy management for renewable electricity production system including hybrid hydrogen sub-system. Journal of Renewable Energies, 1(1), 107-. https://doi.org/10.54966/jreen.v1i1.1198