Improving efficiency through the optimization of energy losses in an induction machine for electric vehicle propulsion
Main Article Content
Abstract
Research into industrial electricity consumption reveals that electric motors are the main actuators accounting for overall consumption expenditure. This underlines the importance of minimizing and optimizing the consumption of these electric motors, to the benefit of industry and, above all, contributing to environmental preservation. We present a strategy for improving efficiency by optimizing energy losses in an induction machine for electric vehicle propulsion. This involves incorporating a speed controller and a flux reference trajectory generator. The proposed control strategy dynamically adjusts the flux reference in real time, with the aim of minimizing the currents consumed by the machine and subsequently reducing losses, such as Joule losses due to currents and iron losses due to flux. The performance of the proposed control strategy is explicitly analyzed, as is its superiority to other strategies with fixed flow references. The effectiveness of the proposed controls has been verified by simulations and experimentally on a three-phase asynchronous motor. As an application, the optimal control of an asynchronous motor, fed by an inverter, is proposed for the propulsion of electric vehicles. The reduction in current demand on the machine controlled by optimal control means lower current consumption by the vehicle's batteries.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
References
Abrahamasen, F., Blaabjerg, A., Pederson, J. K., Grabowski, P. Z., & Thogersen, P. (1998). On the energy optimized control of standard and high efficiency induction motors on CT and HVAC applications. IEEE Transactions on Industry Applications, 34(24), 822-831.
Baturne, I., Moreno-Velo, F. J., Blanco, V., & Ferruz, J. (2008). Design of embedded DSP-Based fuzzy controllers for autonomous mobile robots. IEEE Transactions on Industrial Electronics, 55(2), 928-936.
Benbouhenni, H. (2019). Correcteur du couple à cinq niveaux pour la commande DTC douze secteurs basés sur la logique floue et les réseaux de neurones de la MAS de forte puissance. Journal of Renewable Energies, 22(1), 113-121. https://doi.org/10.54966/jreen.v22i1.731
Berabez, K., Hamoudi, F., Idjdarene, K., & Hacini, I. (2023). Fuzzy Logic PI controller based Direct Torque control of a Self-Excited Induction Generator through a three-level Rectifier. Journal of Renewable Energies, 1(1), 1-. https://doi.org/10.54966/jreen.v1i1.1093
Boukhalfa, G., Belkacem, S., Chikhi, A., & Benaggoune, S. (2022). Direct torque control of dual star induction motor using a fuzzy-PSO hybrid approach. Applied Computing and Informatics, 18(1/2), 74-89. https://doi.org/10.1016/j.aci.2018.09.001
Boukhelifa, A. (2007). Les éléments d’optimisation du pilotage d’une machine asynchrone en vue d’un contrôle vectoriel. Thèse de doctorat, École Nationale Polytechnique, Algérie.
Chakraborty, C., & Hori, Y. (2003). Fast efficiency optimization techniques for the indirect vector-controlled induction motor drives. IEEE Transactions on Industry Applications, 39(4), 1070-1076.
Chen, H., & Lipo, T. A. (2019). Optimization techniques for reducing energy losses in induction machines for electric vehicles. In 2019 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 5672-5679). IEEE. https://doi.org/10.1109/ECCE.2019.8912701
Gao, H., Xu, D., Wu, B., & Zargari, N. R. (2018). A model predictive power factor control scheme with active damping function for current source rectifiers. IEEE Transactions on Power Electronics, 33(3), 2655-2667. https://doi.org/10.1109/TPEL.2017.2729405
Juan, O. (2008). Comment réduire la consommation des moteurs électriques dans l'industrie. Fiche technique énergie, CRCI Ardenne CCI énergie.
Kazmierkowski, M. P., Krishnan, R., Blaabjerg, F., & Irwin, J. D. (2002). Control in power electronics: Selected problems. Academic Press.
Kim, H. G., Sul, S. K., & Park, M. H. (1984). Optimal efficiency drive of a current source inverter fed induction motor by flux control. IEEE Transactions on Industry Applications, 20(6), 1453-1459. https://doi.org/10.1109/TIA.1984.4503611
Kirschen, D. S., Novotny, D. W., & Lipo, T. A. (1985). On-line efficiency optimization of a variable frequency induction motor drive. IEEE Transactions on Industry Applications, 21(4), 610-616. https://doi.org/10.1109/TIA.1985.4504509
Kisko, A., & Koyama, M. (1983). Control means for minimization of losses in AC and DC motor drives. IEEE Transactions on Industry Applications, IA-19(4), 561-570. https://doi.org/10.1109/TIA.1983.4504146
Krings, A., et al. (2012). Measurement and modeling of iron losses in electrical machines. In Proceedings of the 5th International Conference Magnetism and Metallurgy WMM'12 (pp. 101-119). Gent, Belgium: Gent University.
Maloberti, O. (2006). Contribution à la modélisation de la dynamique d'aimantation dans les matériaux magnétiques doux : Caractérisation et simulation. Thèse de doctorat, Institut National Polytechnique de Grenoble - INPG, France.
Mendes, E., Baba, A., & Razek, A. (1995). Losses minimization of a field-oriented controlled induction machine. IEEE Transactions on Electrical Machines and Drives, 45(12), 310-314.
Metidji, B., Taib, N., Baghli, L., Rekioua, T., & Bacha, S. (2012). Low-cost direct torque control algorithm for induction motor without AC phase current sensors. IEEE Transactions on Power Electronics, 27(9), 4133-4135.
Multon, B. (1998). L’énergie sur la terre : Analyse des ressources et de la consommation. La place de l’énergie électrique, Revue 3EI, September.
Perrat, A. (2010). Efficacité énergétique des machines : Le choix judicieux de la motorisation. White paper, Schneider Electric.
Ramirez, J. M. (1998). Contribution à la commande optimale des machines asynchrones. Thèse de doctorat, Institut National Polytechnique de Grenoble, France.
Reinert, J., Brockmeyer, A., & Donker, W. (2001). Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steinmetz equation. IEEE Transactions on Magnetics, 37(4), 1055-1060.
Roubah, Z. (2003). Modélisation et Commande vectorielle d'une machine à induction avec prise en compte et minimisation des pertes amélioration des performances énergétiques. Mémoire de Magister, Université de Batna, Algérie.
Tazerart, F. (2009). Commande vectorielle optimale de la machine à induction alimentée par un convertisseur matriciel, étude comparative. Mémoire de Magister, Université de Biskra, Algérie.
Tazerart, F., Mokrani, Z., Rekioua, D., & Rekioua, T. (2015). Direct torque control implementation with losses minimization of induction motor for electric vehicle applications with high operating life of the battery. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2015.04.052
Tazerart, F., Taïb, N., Rekioua, T., Rekioua, D., & Tounzi, A. (2014). Direct torque control optimization with loss minimization of induction motor. In Proceedings of the Conférence Internationale en Sciences Technologies Electriques au Maghreb-CISTEM, November 3-6, Tunis. IEEE.
Wang, S., & Jabbar, M. A. (2018). A review of loss mechanisms and mitigation techniques in induction motors for electric vehicle applications. IEEE Transactions on Power Electronics, 34(6), 5260-5271. https://doi.org/10.1109/TPEL.2018.2834862
Wang, S., Gao, H., Afsharian, J., & Xu, D. (2019). High frequency bidirectional isolated matrix converter for AC-motor drives with model predictive control. In 2019 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 5597-5602). IEEE. https://doi.org/10.1109/ECCE.2019.8912701.
Xu, L., & Enjeti, P. N. (2016). Energy loss minimization in induction motor drives using advanced control strategies. IEEE Transactions on Industry Applications, 52(5), 3969-3978. https://doi.org/10.1109/TIA.2016.2524638.
Zhu, Z. Q., & Howe, D. (2017). Optimization of energy efficiency in electric vehicles with induction motor drive. IEEE Transactions on Vehicular Technology, 66(7), 5439-5448. https://doi.org/10.1109/TVT.2017.2689183.