Design and sizing of a solar thermal power plant with parabolic trough collectors

Main Article Content

Sylvain Niyonsaba
Jean Bosco Niyonzima


The aim of this project is to build a solar thermal power plant to supply the MUTSAMA center. The lack of electricity and the need to increase the efficiency of the MUTSAMA center are the main reasons why we decided to carry out this work. To achieve this, we adopted a strategy of studying the selection of the site and the solar resource, calculating and adapting the parameters of the solar thermal power plant and choosing the equipment for our production source. To meet the objective, we carried out a modelling and simulation study of the solar thermal power plant using the SAM tool, and designed a system for orienting the collectors to the path of the sun using an Arduino Uno R3 board and TinkerCad software. The plant's collectors are parabolic troughs made by Solagenix (SGX-1). The plant is built with two collectors, each formed by twelve modules, and produces a power of 0.5 MW with 12 hours of operation in the absence of sunlight. The results show that the plant can produce a power of 517.17KW, an energy evaluated at 325939KWh for one year with a capacity factor of 8.3% and gives a maximum power for a period of 10 hours to 16 hours during the day.

Article Details

How to Cite
S. Niyonsaba and J. B. . Niyonzima, “Design and sizing of a solar thermal power plant with parabolic trough collectors”, J. Ren. Energies, vol. 27, no. 1, pp. 81 -, Jun. 2024.


" Surface centrifugal pump 380V - 0.75kW - 1"1/2 - Pompe&Moteur ", Pompe & Moteur,, Accessed: 16 July 2023.

"Buy BTKF-K 40-160 (1500) high temperature centrifugal pump without motor -" ,, Accessed: 20 June 2023.

"Laplace's Law (thermodynamics),, Accessed: 2 November 2023.

"Linear pressure drops – Viscosity,, Accessed: 15 July 2023.

"Power law [Hydraulics: From fluid mechanics to power transmission]",, Accessed: 2 November 2023.

« [Hot Item] Small steam turbine Power Plant 100 Kw 500 Kw 1250 KW 1500 KW 1600 KW 1800 KW 3000 kw »,,, Accessed: 20 June 2023.

« THERMINOL®* VP-1 - FRAGOL »,, Accessed: 7 November 2023.

«Condenser (separation) »,, Accessed: 6 October 2023.

«Heat exchanger »,, Accessed: 6 October 2023.

A. A. Bashir and M. Ozbey. ( 2022) "Modelling and analysis of an 80-MW parabolic trough concentrated solar power plant in Sudan", Clean Energy, vol. 6, no. 3, pp. 512-527.

A. A. Bashir et M. Ozbey. (2022) « Modelling and analysis of an 80-MW parabolic trough concentrated solar power plant in Sudan », Clean Energy, vol. 6, no 3, p. 512 527, doi: 10.1093/ce/zkac032.

Bourret, "Les échangeurs de chaleur", INSA Toulouse Civil Engineering Department. I.

E. H. D. Bouskela et G. Gentilini. (2012) « Dynamic modelling of a Condenser/Water Heater with the Thermo-SysPro Library, DOI: 10.3384/ecp12076745.

E.Z. Moya. (2012) “Parabolic-trough concentrating solar power (CSP) systems”, in Concentrating solar power technology, p. 197-239.

El Hefni. (2014) « Dynamic modeling of concentrated solar power plants with the ThermoSysPro library (Parabolic Trough collectors, Fresnel reflector and Solar-Hybrid) », Energy Procedia, vol. 49, p. 1127 1137.

Exercise Heat Exchangers - Thermal Transfer, (24 January 2018), Accessed: 17 June 2023.


Global heat transfer coefficient / TLV - Spécialiste de la Vapeur (France),, Accessed: 26 June 2023.

M. Asiri et A. Y. Suliman. (2021) « Design and analysis of parabolic trough collector power plant in Saudi Arabia », International Transaction Journal of Engineering, Management, Applied Sciences & Technologies, vol. 12, p. 12A-12F.

M. GHODBANE, B. BOUMEDDANE, S. LARGOT, et N. Heniat. (2015) « Simulation numérique d’un concentrateur cylindro-parabolique en El Oued, Algérie », International Journal of Scientific Research & Engineering Technology (IJSET), vol. 3, no 2, p. 68 74.

M. Irshad, A. Yadav, R. Singh, et A. Kumar. (2018) « Mathematical modelling and performance analysis of single pass flat plate solar collector », IOP Conf. Ser.: Mater. Sci. Eng., vol. 404, p. 012051, doi: 10.1088/1757-899X/404/1/012051.

M. Yasin et O. I. Draidi. (2016) « Design and sizing characteristics of a solar thermal power plant with parabolic trough collectors for a typical site in Palestine », ICEEP IV, vol. 6, p. 11.

R. AZZEDDENE and S. HAMZA. ( 2022) " Intégration de système photovoltaïque aux pivots d'irrigation de Type ANABIB ", PhD Thesis, faculté des sciences et de la technologie univ bba.

Rawani, S. P. Sharma, et K. D. P. Singh. (2017) « Enhancement in Performance of Parabolic Trough Collector with Serrated Twisted-tape Inserts ».

S. Mills. (2018) « Combining solar power with coal-fired power plants, or cofiring natural gas », Clean Energy, vol. 2, no 1, p. 1 9.

S. Zibouche and H. Mekaoui. (2021) "Etude, conception et réalisation d'un récepteur trapézoïdal pour un système solaire à concentration linéaire de Fresnel", PhD Thesis, Université Mouloud Mammeri Tizi Ouzou.

T. E. Amin, G. Roghayeh, R. Fatemeh, et P. Fatollah. (2015) « Evaluation of nanoparticle shape effect on a nanofluid based flat-plate solar collector efficiency », Energy Exploration & Exploitation, vol. 33, no 5, p. 659 676.

U. R. Energy, « Water desalination using renewable energy », IRENA, Abu Dhabi, 2012.

W. Bakha, Y. Harnane, and S. Bouzid. (2021) « Calcul Du Refroidisseur Des Fumes D'un Incinérateur Industriel BIOWAS ».

W. T. Hamilton, A. M. Newman, M. J. Wagner, et R. J. Braun. (2020) « Off-design performance of molten salt-driven Rankine cycles and its impact on the optimal dispatch of concentrating solar power systems », Energy Conversion and Management, vol. 220, p. 113025, doi: 10.1016/j.enconman.2020.113025.

Zalba, J. M. Marin, L. F. Cabeza, et H. Mehling. (2003) « Review on thermal energy storage with phase change: materials, heat transfer analysis and applications », Applied thermal engineering, vol. 23, no 3, p. 251 283.