English An Assessment of the impacts of selected Meteorological and Land Use Land Cover Datasets on the accuracy of wind speeds downscaled with the Weather Research and Forecasting Model for coastal areas in Ghana

Main Article Content

Denis Edem K Dzebre
Charlotte Asiedu
Eric Akowuah
Samuel Boahen
Kofi Owura Amoabeng
David Oppong

Abstract

Downscaling of wind speeds with the Weather Research and Forecasting model (WRF) model requires inputs from datasets such as Meteorological and Land Use and Land Cover (LULC) datasets. The accuracy of these datasets is among the factors that significantly impact the accuracy of the wind speeds that are generated by the model. In this study, we assess the accuracy of wind speeds data that are downscaled for an area in coastal Ghana using six meteorological, and two global Land use and Land Cover (LULC) datasets as inputs to the WRF model. In contrast to the LULC datasets tested, model wind speeds for the area were more significantly impacted by the different meteorological datasets. Meteorological datasets that were produced with higher resolution forecasts combined with more advanced data assimilation techniques produced better estimates of wind speed, and vice versa. The JMA JRA55 Reanalysis, NCEP GFS Analysis data, and ECWMF ERA5 gave the relatively best combinations of wind speed error metrics and are therefore recommended for consideration for downscaling of wind speeds for wind resources assessment in the coastal regions of Ghana. However, the ECWMF ERA5 is preferred as its mean error margins are fairly constant and so should be easier to correct.

Article Details

How to Cite
[1]
D. E. K. Dzebre, C. . Asiedu, E. . Akowuah, S. Boahen, K. O. . Amoabeng, and D. . Oppong, “English An Assessment of the impacts of selected Meteorological and Land Use Land Cover Datasets on the accuracy of wind speeds downscaled with the Weather Research and Forecasting Model for coastal areas in Ghana”, J. Ren. Energies, vol. 27, no. 1, pp. 99 -, Jun. 2024.
Section
Articles

References

Available GRIB Datasets from NCAR. (2020). Retrieved from http://www2.mmm.ucar.edu/wrf/users/download/free_data.html

Barker, D., Huang, X.-Y., Liu, Z., Auligné, T., Zhang, X., Rugg, S., . . . Chen, Y. (2012). The weather research and forecasting model's community variational/ensemble data assimilation system: WRFDA. Bulletin of the American Meteorological Society, 93(6), 831-843.

Boadh, R., Satyanarayana, A. N. V., Rama Krishna, T. V. B. P. S., & Madala, S. (2016). Sensitivity of PBL schemes of the WRF-ARW model in simulating the boundary layer flow parameters for its application to air pollution dispersion modeling over a tropical station. Atmósfera, 29, 61-81. doi:10.20937/ATM.2016.29.01.05

Breeze, P. (2019). Chapter 11 - Wind Power. In Power Generation Technologies (Third Edition) (pp. 251-273): Newnes.

Carvalho, D., Rocha, A., Gomez-Gesteira, M., & Silva Santos, C. (2014). WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal. Applied energy, 117, 116-126. doi:10.1016/j.apenergy.2013.12.001

Chadee, X., Seegobin, N., & Clarke, R. (2017). Optimizing the Weather Research and Forecasting (WRF) Model for Mapping the Near-Surface Wind Resources over the Southernmost Caribbean Islands of Trinidad and Tobago. Energies, 10(7), 931. doi:10.3390/en10070931. (Accession No. doi:10.3390/en10070931)

De Meij, A., & Vinuesa, J. F. (2014). Impact of SRTM and Corine Land Cover data on meteorological parameters using WRF. Atmospheric Research, 143, 351-370. doi:https://doi.org/10.1016/j.atmosres.2014.03.004

Dee, D., Fasullo, J., Shea, D., Walsh, J., & , N. S. E. (2016, December 12, 2016). Atmospheric Reanalysis: Overview & Comparison Tables. Retrieved from https://climatedataguide.ucar.edu/climate-data/atmospheric-reanalysis-overview-comparison-tables

Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., poli, P., Kobayashi, S., Bauer, D. P. (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meterological Society, 137/656), 553-597.

Deserno, M. (2004). Linear and Logarithmic Interpolation. Retrieved from https://www.cmu.edu/biolphys/deserno/pdf/log_interpol.pdf

Dzebre, D. E. K., Acheampong, A. A., Ampofo, J., & Adaramola, M. S. (2019). A sensitivity study of Surface Wind simulations over Coastal Ghana to selected Time Control and Nudging options in the Weather Research and Forecasting Model. Heliyon, 5(3), e01385. doi:https://doi.org/10.1016/j.heliyon.2019.e01385

Dzebre, D. E. K., & Adaramola, M. S. (2019). Impact of Selected Options in the Weather Research and Forecasting Model on Surface Wind Hindcasts in Coastal Ghana. Energies, 12(19), 3670. doi:https://doi.org/10.3390/en12193670

Dzebre, D. E. K., Ampofo, J., & Adaramola, M. S. (2021). An assessment of high-resolution wind speeds downscaled with the Weather Research and Forecasting Model for coastal areas in Ghana. Heliyon, 7(8), e07768. doi:https://doi.org/10.1016/j.heliyon.2021.e07768

ECWMF. (2012). ERA-Interim Project. Retrieved from: https://doi.org/10.5065/D6CR5RD9

Emery, C., Tai, E., & Yarwood, G. (2001). Enhanced meteorological modeling and performance evaluation for two Texas ozone episodes. Retrieved from

Fernandez-Gonzalez, S., Martin, M. L., Garcia-Ortega, E., Merino, A., Lorenzana, J., Sanchez, J. L., . . . Sanz Rodrigo, J. (2017). Sensitivity Analysis of the WRF Model: Wind-Resource Assessment for Complex Terrain. Journal of Applied Meteorology and Climatology, (2017). doi:10.1175/JAMC-D-17-0121.1

Gbode, I. E., Dudhia, J., Ajayi, V. O., & Ogunjobi, K. O. (2017). Evaluation of Weather Research and Forecasting (WRF) model physics in simulating West African Monsoon (WAM). In: Presentation.

Ghana Renewable Energy Master Plan Taskforce. (2019). Ghana Renewable Energy Master Plan. Retrieved from

Ghati, S., & Mohan, M. (2015). The Impact of Land Use/Land Cover on WRF Performance in a Sub-Tropical Urban Environment. In: Presentation.

Global Wind Energy Council. (2023). GWEC Global Wind Report - 2023. In.

Gunwani, P., & Mohan, M. (2017). Sensitivity of WRF model estimates to various PBL parameterizations in different climatic zones over India. Atmospheric Research, 194, 43-65. doi:10.1016/j.atmosres.2017.04.026

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horanyi, A., Munoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2018). ERA5 hourly data on pressure levels from 1959 to present. ERA5. Retrieved from: https://cds.climate.copernicus.eu/cdsapp#!/home

Huang, X.-Y., Xiao, Q., Barker, D. M., Zhang, X., Michalakes, J., Huang, W., . . . Kuo, Y.-H. (2009). Four-Dimensional Variational Data Assimilation for WRF: Formulation and Preliminary Results. Monthly Weather Review, 137(1), 299-314. doi:10.1175/2008mwr2577.1

Japan Meteorological Agency. (2013). JRA-55: Japanese 55-year Reanalysis, Daily 3-Hourly and 6-Hourly Data. Retrieved from: https://doi.org/10.5065/D6HH6H41

Jimenez-Esteve, B., Udina, M., Soler, M., Pepin, N., & Miro, J. (2017). Land Use and Topography Influence in a Complex Terrain Area: A High Resolution Mesoscale Modelling Study over the Eastern Pyrenees using the WRF Model. Volume 202, 49-62. doi:10.1016/j.atmosres.2017.11.012

Kalnay, E., Li, H., Miyoshi, T., Yang, S.-C., & Ballabrera-Poy, J. (2007). 4-D-Var or ensemble Kalman filter? Tellus A, 59(5), 758-773. doi:10.1111/j.1600-0870.2007.00261.x

Lorenc, A. (2003). Relative Merits of 4D-Var and Ensemble Kalman Filter. Retrieved from ecmwf.org/sites/default/files/elibrary/2003/10817-relative-merits-4d-var-and-ensemble-kalman-filter.pdf

McGuffie, K., & Henderson-Sellers, A. (2005). A climate modelling primer: John Wiley & Sons.

Mughal, M. O., Lynch, M., Yu, F., McGann, B., Jeanneret, F., & Sutton, J. (2017). Wind modelling, validation and sensitivity study using Weather Research and Forecasting model in complex terrain. Environmental Modelling & Software, 90, 107-125. doi:10.1016/j.envsoft.2017.01.009

National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. (2000a). NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Retrieved from: https://doi.org/10.5065/D6M043C6

National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. (2000b). NCEP/DOE Reanalysis 2 (R2). Retrieved from: http://rda.ucar.edu/datasets/ds091.0/

Parker, W. S. (2016). Reanalyses and Observations: What’s the Difference? Bulletin of the American Meteorological Society, 97(9), 1565-1572. doi:10.1175/bams-d-14-00226.1

Rabier, F., & Liu, Z. (2003). Variational data assimilation: theory and overview. Paper presented at the ECMWF Seminar on Recent developments in data assimilation for atmosphere and ocean.

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., . . . Becker, E. (2014). The NCEP Climate Forecast System Version 2. Journal of Climate, 27(6), 2185-2208. doi:10.1175/jcli-d-12-00823.1

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., . . . Becker, E. (2011). NCEP Climate Forecast System Version 2 (CFSv2) 6-hourly Products. Retrieved from: https://doi.org/10.5065/D61C1TXF

Santos-Alamillos, F. J., Pozo-Vazquez, D., Ruiz-Arias, J. A., & Tovar-Pescador, J. (2015). Influence of land-use misrepresentation on the accuracy of WRF wind estimates: Evaluation of GLCC and CORINE land-use maps in southern Spain. Atmospheric Research, 157, 17-28. doi:https://doi.org/10.1016/j.atmosres.2015.01.006

Schicker, I., Arnold Arias, D., & Seibert, P. (2016). Influences of updated land-use datasets on WRF simulations for two Austrian regions. Meteorology and Atmospheric Physics, 128(3), 279-301. doi:10.1007/s00703-015-0416-y

Warner, T. T. (2011). Numerical weather and climate prediction. Cambridge CB2 8RU, UK: Cambridge University Press.

Wei Wang, C. B., Michael Duda, Jimy Dudhia, Dave Gill, Michael Kavulich, Kelly Keene, Ming Chen, Hui-Chuan Lin, John Michalakes, Syed Rizvi, Xin Zhang, Judith Berner, Soyoung Ha and Kate Fossell. (2016). ARW Version 3 Modeling System User’s Guide. In. Colorado, USA: NCAR.

WRF V3 Geographical Static Data Downloads Page Page. (06/05/2018). Retrieved from http://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog_V3.html

Yang, J., & Duan, K. (2016). Effects of Initial Drivers and Land Use on WRF Modeling for Near-Surface Fields and Atmospheric Boundary Layer over the Northeastern Tibetan Plateau. Advances in Meteorology, 2016, 16. doi:10.1155/2016/7849249

Zhao, D.-M., & Wu, J. (2018). Evaluating the impacts of land use and land cover changes on surface air temperature using the WRF-mosaic approach. Atmospheric and Oceanic Science Letters, 11(3), 262-269. doi:10.1080/16742834.2018.1461527