Charge carrier mobility and the recombination processes within a bulk heterojunction organic solar cell exhibiting disordered hopping
Main Article Content
Abstract
This paper studies the interplay between charge carrier mobility and the related recombination processes exhibited within a bulk heterojunction-disordered hopping organic solar cell, using drift-diffusion simulations. The investigation focuses on the recombination order, the current-voltage properties and the charge carrier mobility’s active involvement in the recombination processes within an organic solar cell. The outcome of the investigation based on the drift diffusion simulation highlights the fact that the recombination characteristics are altered by charge carrier mobility. There exists a normalised mobility, which averages the progression of slow to fast charge carriers transforming the electrons and holes mobilities into an optimal mobility, which significantly increases the efficiency for a variety of bulk heterojunction structure types by significantly lowering the extent of recombination.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
References
Abudulimu, A. (2012). Measuring the efficiency and charge carrier mobility of organic solar cells [Umeå University]. http://oatd.org/oatd/record?record=oai%5C%3ADiVA.org%5C%3Aumu-63805
Bi, Z., Zhu, Q., Xu, X., Naveed, H. B., Sui, X., Xin, J., Zhang, L., Li, T., Zhou, K., Liu, X., Zhan, X., & Ma, W. (2019). Efficient Quaternary Organic Solar Cells with Parallel Alloy Morphology. Advanced Functional Materials, 29(9), 1806804. https://doi.org/10.1002/adfm.201806804
Centurioni, E. (2005). Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. Applied Optics, 44(35), 7532. https://doi.org/10.1364/AO.44.007532
Chen, L. X. (2019). Organic Solar Cells: Recent Progress and Challenges. ACS Energy Letters, 4(10), 2537–2539. https://doi.org/10.1021/acsenergylett.9b02071
Chen, W., Yin, W., & Zhao, L. (2020) Buffer layers for perovskite solar cells: from materials to interface engineering . Journal of Materials chemistry A, 8(7), 3536-3551. DOI: 10. 1039/C9TA12733H
Cui, Y., Yao, H., Zhang, J., Xian, K., Zhang, T., Hong, L., Wang, Y., Xu, Y., Ma, K., An, C., He, C., Wei, Z., Gao, F., & Hou, J. (2020). Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Advanced Materials (Deerfield Beach, Fla.), 32(19), e1908205. https://doi.org/10.1002/adma.201908205
Dastoor, P. C., & Belcher, W. J. (2019). How the West was Won? A History of Organic Photovoltaics. Substantia, 99-110 Pages. https://doi.org/10.13128/SUBSTANTIA-612
Duan, L., & Uddin, A. (2020). Progress in Stability of Organic Solar Cells. Advanced Science, 7(11), 1903259. https://doi.org/10.1002/advs.201903259
Fan, B., Ying, L., Wang, Z., He, B., Jiang, X.-F., Huang, F., & Cao, Y. (2017). Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9%. Energy & Environmental Science, 10(5), 1243–1251. https://doi.org/10.1039/C7EE00619E
Forrest, S. (2012). Energy efficiency with organic electronics: Ching W. Tang revisits his days at Kodak. MRS Bulletin, 37(6), 552–553. https://doi.org/10.1557/mrs.2012.125
Galagan, Y., & Andriesse, R. (2012). Organic Photovoltaics: Technologies and Manufacturing. In V. Fthenakis (Ed.), Third Generation Photovoltaics. InTech. https://doi.org/10.5772/25901
Gao, L., Zhang, Z.-G., Xue, L., Min, J., Zhang, J., Wei, Z., & Li, Y. (2016). All-Polymer Solar Cells Based on Absorption-Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27%. Advanced Materials (Deerfield Beach, Fla.), 28(9), 1884–1890. https://doi.org/10.1002/adma.201504629
Goh, T., Huang, J. S., Yager, K. G., Sfeir, M. Y., Nam, C. Y., Tong, X., Guard, L. M., Melvin, P. R., Antonio, F., Bartolome, B. G., Lee, M. L., Hazari, N., & Taylor, A. D. (2016). Quaternary Organic Solar Cells Enhanced by Cocrystalline Squaraines with Power Conversion Efficiencies >10%. Advanced Energy Materials, 6(21). https://doi.org/10.1002/aenm.201600660
Göhler, C., Wagenpfahl, A., & Deibel, C. (2018). Nongeminate Recombination in Organic Solar Cells. Advanced Electronic Materials, 4(10), 1700505. https://doi.org/10.1002/aelm.201700505
Groves, C., Blakesley, J. C., & Greenham, N. C. (2010). Effect of Charge Trapping on Geminate Recombination and Polymer Solar Cell Performance. Nano Letters, 10(3), 1063–1069. https://doi.org/10.1021/nl100080r
Guo, Y., Li, Y., Awartani, O., Han, H., Zhao, J., Ade, H., Yan, H., & Zhao, D. (2017). Improved Performance of All-Polymer Solar Cells Enabled by Naphthodiperylenetetraimide-Based Polymer Acceptor. Advanced Materials (Deerfield Beach, Fla.), 29(26). https://doi.org/10.1002/adma.201700309
Guo, Y., Li, Y., Awartani, O., Zhao, J., Han, H., Ade, H., Zhao, D., & Yan, H. (2016). A Vinylene Bridged Perylenediimide Based Polymeric Acceptor Enabling Efficient All Polymer Solar Cells Processed under Ambient Conditions. Advanced Materials, 28(38), 8483–8489. https://doi.org/10.1002/adma.201602387
Hong, L., Yao, H., Cui, Y., Ge, Z., & Hou, J. (2020). Recent advances in high-efficiency organic solar cells fabricated by eco-compatible solvents at relatively large-area scale. APL Materials, 8(12), 120901. https://doi.org/10.1063/5.0027948
Jin, K., Xiao, Z., & Ding, L. (2021). D18, an eximious solar polymer! Journal of Semiconductors, 42(1), 010502. https://doi.org/10.1088/1674-4926/42/1/010502
Li, C., Zhou, J., Song, J., Xu, J., Zhang, H., Zhang, X., Guo, J., Zhu, L., Wei, D., Han, G., Min, J., Zhang, Y., Xie, Z., Yi, Y., Yan, H., Gao, F., Liu, F., & Sun, Y. (2021). Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 6(6), 605–613. https://doi.org/10.1038/s41560-021-00820-x
Li, S., Ye, L., Zhao, W., Zhang, S., Mukherjee, S., Ade, H., & Hou, J. (2016). Energy Level Modulation of Small Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells. Advanced Materials, 28(42), 9423–9429. https://doi.org/10.1002/adma.201602776
Li, Y., Huang, W., Zhao, D., Wang, L., Jiao, Z., Huang, Q., Wang, P., Sun, M., & Yuan, G. (2022). Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor. Molecules, 27(6), 1800. https://doi.org/10.3390/molecules27061800
Lin, Y., Wang, J., Zhang, Z., Bai, H., Li, Y., Zhu, D., & Zhan, X. (2015). An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Advanced Materials, 27(7), 1170–1174. https://doi.org/10.1002/adma.201404317
Lin, Y., Zhao, F., He, Q., Huo, L., Wu, Y., Parker, T. C., Ma, W., Sun, Y., Wang, C., Zhu, D., Heeger, A. J., Marder, S. R., & Zhan, X. (2016). High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics. Journal of the American Chemical Society, 138(14), 4955–4961. https://doi.org/10.1021/jacs.6b02004
Liu, M., Johnston, M., & Snaith, H. (2013). Efficient planar heterojunction perovskite solar cells by vapor deposition. Nature, 501(7467), 395-398.DOI:[10. 1038./nature12509] (https://doi. org/10.1038)
Liu, Q., Jiang, Y., Jin, K., Qin, J., Xu, J., Li, W., Xiong, J., Liu, J., Xiao, Z., Sun, K., Yang, S., Zhang, X., & Ding, L. (2020). 18% Efficiency organic solar cells. Science Bulletin, 65(4), 272–275. https://doi.org/10.1016/j.scib.2020.01.001
Ma, R., Liu, T., Luo, Z., Guo, Q., Xiao, Y., Chen, Y., Li, X., Luo, S., Lu, X., Zhang, M., Li, Y., & Yan, H. (2020). Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Science China Chemistry, 63(3), 325–330. https://doi.org/10.1007/s11426-019-9669-3
Mahmud, M., Huda, N., Farjana, S., & Lang, C. (2018). Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment. Energies, 11(9), 2346. https://doi.org/10.3390/en11092346
Mandal, S., Purohit, G., & Katiyar, M. (2012). Inkjet Printed Organic Thin Film Transistors: Achievements and Challenges. Materials Science Forum, 736, 250–274. https://doi.org/10.4028/www.scientific.net/MSF.736.250
Markus, B., & Anne, K. (2009). Positivity Preserving Discretization of Time Dependent Semiconductor Model Equations (6). Norwegian University of Science and Technology, N-7491. https://www.math.ntnu.no/preprint/numerics/2009/N6-2009.pdf
Mori, D., Benten, H., Okada, I., Ohkita, H., & Ito, S. (2014). Low Bandgap Donor/Acceptor Polymer Blend Solar Cells with Efficiency Exceeding 4%. Advanced Energy Materials, 4(3), 1301006. https://doi.org/10.1002/aenm.201301006
Qin, J., Zhang, L., Zuo, C., Xiao, Z., Yuan, Y., Yang, S., Hao, F., Cheng, M., Sun, K., Bao, Q., Bin, Z., Jin, Z., & Ding, L. (2021). A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. Journal of Semiconductors, 42(1), 010501. https://doi.org/10.1088/1674-4926/42/1/010501
Saliba, M Matsui, T., Domanski,K., et al. (2016). Interfacial engineering for high efficiency perovskite solar cells. Science, 354(6308), 206-209. DOI:[10.1126/science.aaf3503] (https://doi.org /10. 1126)
Schopp, N., Akhtanova, G., Panoy, P., Arbuz, A., Chae, S., Yi, A., Kim, H. J., Promarak, V., Nguyen, T.-Q., & Brus, V. V. (2022). Unraveling Device Physics of Dilute-Donor Narrow-Bandgap Organic Solar Cells with Highly Transparent Active Layers. Advanced Materials (Deerfield Beach, Fla.), 34(31), e2203796. https://doi.org/10.1002/adma.202203796
Shaabani, L., Blom, P., & Havenith, R. (2012). Advanced device structures for enhanced organic solar cell efficiencies. https://www.semanticscholar.org/paper/Advanced-device-structures-for-enhanced-organic-Shaabani-Blom/91e7a532fd5cd7004a9b648bf3ad413c41061533#citing-papers
Sharma, A., Masoumi, S., Gedefaw, D., O’Shaughnessy, S., Baran, D., & Pakdel, A. (2022). Flexible solar and thermal energy conversion devices: Organic photovoltaics (OPVs), organic thermoelectric generators (OTEGs) and hybrid PV-TEG systems. Applied Materials Today, 29, 101614. https://doi.org/10.1016/j.apmt.2022.101614
Shi, Y., Guo, H., Huang, J., Zhang, X., Wu, Z., Yang, K., Zhang, Y., Feng, K., Woo, H. Y., Ortiz, R. P., Zhou, M., & Guo, X. (2020). Distannylated Bithiophene Imide: Enabling High-Performance n-Type Polymer Semiconductors with an Acceptor-Acceptor Backbone. Angewandte Chemie (International Ed. in English), 59(34), 14449–14457. https://doi.org/10.1002/anie.202002292
Song, J., Zhu, L., Li, C., Xu, J., Wu, H., Zhang, X., Zhang, Y., Tang, Z., Liu, F., & Sun, Y. (2021). High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy. Matter, 4(7), 2542–2552. https://doi.org/10.1016/j.matt.2021.06.010
Street, R. A., Krakaris, A., & Cowan, S. R. (2012). Recombination Through Different Types of Localized States in Organic Solar Cells. Advanced Functional Materials, 22(21), 4608–4619. https://doi.org/10.1002/adfm.201200031
Sun, H., Yu, H., Shi, Y., Yu, J., Peng, Z., Zhang, X., Liu, B., Wang, J., Singh, R., Lee, J., Li, Y., Wei, Z., Liao, Q., Kan, Z., Ye, L., Yan, H., Gao, F., & Guo, X. (2020). A Narrow Bandgap n-Type Polymer with an Acceptor–Acceptor Backbone Enabling Efficient All Polymer Solar Cells. Advanced Materials, 32(43), 2004183. https://doi.org/10.1002/adma.202004183
Tang, C.W. (1986). Two-layer organic photovoltaic cell Applied Physical Letters. 48 (2): 183–185. https://doi.org/10.1063/1.96937
Tran, H. N., Park, S., Wibowo, F. T. A., Krishna, N. V., Kang, J. H., Seo, J. H., Nguyen Phu, H., Jang, S., & Cho, S. (2020). 17% Non Fullerene Organic Solar Cells with Annealing Free Aqueous MoO x. Advanced Science, 7(21), 2002395. https://doi.org/10.1002/advs.202002395
Vollbrecht, J., Lee, J., Ko, S.-J., Brus, V. V., Karki, A., Le, W., Seifrid, M., Ford, M. J., Cho, K., Bazan, G. C., & Nguyen, T.-Q. (2020). Design of narrow bandgap non-fullerene acceptors for photovoltaic applications and investigation of non-geminate recombination dynamics. Journal of Materials Chemistry C, 8(43), 15175–15182. https://doi.org/10.1039/D0TC02136A
Vollbrecht, J., Tokmoldin, N., Sun, B., Saglamkaya, E., Perdigón-Toro, L., Hosseini, S. M., Son, J. H., Woo, H. Y., Shoaee, S., & Neher, D. (2023). On the relationship of the effective mobility and photoconductance mobility in organic solar cells. Energy Advances, 2(9), 1390–1398. https://doi.org/10.1039/D3YA00125C
Volpi, R. (2017, January 16). Modelling Charge Transport for Organic Solar Cells within Marcus Theory. https://doi.org/10.3384/diss.diva-133329
Wagenpfahl, A., Deibel, C., & Dyakonov, V. (2010). Organic solar cell efficiencies under the aspect of reduced surface recombination velocities. IEEE Journal of Selected Topics in Quantum Electronics, 16(6), 1759–1763. https://doi.org/10.1109/JSTQE.2010.2042142
Wang, J.-L., Liu, K.-K., Hong, L., Ge, G.-Y., Zhang, C., & Hou, J. (2018). Selenopheno[3,2- b ]thiophene-Based Narrow-Bandgap Nonfullerene Acceptor Enabling 13.3% Efficiency for Organic Solar Cells with Thickness-Insensitive Feature. ACS Energy Letters, 3(12), 2967–2976. https://doi.org/10.1021/acsenergylett.8b01808
Wilken, S., Scheunemann, D., Dahlström, S., Nyman, M., Parisi, J., & Österbacka, R. (2021). How to Reduce Charge Recombination in Organic Solar Cells: There Are Still Lessons to Learn from P3HT:PCBM. Advanced Electronic Materials, 7(5), 2001056. https://doi.org/10.1002/aelm.202001056
Würfel, U., Neher, D., Spies, A., & Albrecht, S. (2015). Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells. Nature Communications, 6(1), 6951. https://doi.org/10.1038/ncomms7951
Xu, X., Bi, Z., Ma, W., Wang, Z., Choy, W. C. H., Wu, W., Zhang, G., Li, Y., & Peng, Q. (2017). Highly Efficient Ternary-Blend Polymer Solar Cells Enabled by a Nonfullerene Acceptor and Two Polymer Donors with a Broad Composition Tolerance. Advanced Materials (Deerfield Beach, Fla.), 29(46). https://doi.org/10.1002/adma.201704271
Xu, X., Yu, T., Bi, Z., Ma, W., Li, Y., & Peng, Q. (2018). Realizing Over 13% Efficiency in Green Solvent Processed Nonfullerene Organic Solar Cells Enabled by 1,3,4 Thiadiazole Based Wide Bandgap Copolymers. Advanced Materials, 30(3), 1703973. https://doi.org/10.1002/adma.201703973
Yuan, J., Huang, T., Cheng, P., Zou, Y., Zhang, H., Yang, J. L., Chang, S.-Y., Zhang, Z., Huang, W., Wang, R., Meng, D., Gao, F., & Yang, Y. (2019). Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nature Communications, 10(1), 570. https://doi.org/10.1038/s41467-019-08386-9
Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H.-L., Lau, T.-K., Lu, X., Zhu, C., Peng, H., Johnson, P. A., Leclerc, M., Cao, Y., Ulanski, J., Li, Y., & Zou, Y. (2019). Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule, 3(4), 1140–1151. https://doi.org/10.1016/j.joule.2019.01.004
Yumnam, N., Hirwa, H., & Wagner, V. (2017). Analytical and numerical analysis of charge carriers extracted by linearly increasing voltage in a metal-insulator-semiconductor structure relevant to bulk heterojunction organic solar cells. Journal of Physics D: Applied Physics, 50(49), 495107. https://doi.org/10.1088/1361-6463/aa94f1
Zhan, X., Tan, Z., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y., Zhu, D., Kippelen, B., & Marder, S. R. (2007). A High-Mobility Electron-Transport Polymer with Broad Absorption and Its Use in Field-Effect Transistors and All-Polymer Solar Cells. Journal of the American Chemical Society, 129(23), 7246–7247. https://doi.org/10.1021/ja071760d
Zhang, S., Qin, Y., Zhu, J., & Hou, J. (2018). Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor. Advanced Materials (Deerfield Beach, Fla.), 30(20), e1800868. https://doi.org/10.1002/adma.201800868
Zhao, R., Wang, N., Yu, Y., & Liu, J. (2020). Organoboron Polymer for 10% Efficiency All-Polymer Solar Cells. Chemistry of Materials, 32(3), 1308–1314. https://doi.org/10.1021/acs.chemmater.9b04997
Zhao, W., Li, S., Yao, H., Zhang, S., Zhang, Y., Yang, B., & Hou, J. (2017). Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. Journal of the American Chemical Society, 139(21), 7148–7151. https://doi.org/10.1021/jacs.7b02677
Zhao, W., Qian, D., Zhang, S., Li, S., Inganäs, O., Gao, F., & Hou, J. (2016). Fullerene Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Advanced Materials, 28(23), 4734–4739. https://doi.org/10.1002/adma.201600281
Zhao, Y., & Zhang, Z. (2020).Recent progress on charge transport layers in perovskite solar cells: strategies and challenges. Energy and environment science, 13(4), 1110-1138. DOI[10.1039 /C9EE03717H]
Zheng, Z., Awartani, O. M., Gautam, B., Liu, D., Qin, Y., Li, W., Bataller, A., Gundogdu, K., Ade, H., & Hou, J. (2017). Efficient Charge Transfer and Fine-Tuned Energy Level Alignment in a THF-Processed Fullerene-Free Organic Solar Cell with 11.3% Efficiency. Advanced Materials (Deerfield Beach, Fla.), 29(5). https://doi.org/10.1002/adma.201604241
Zojer, K. (2021). Simulation of Charge Carriers in Organic Electronic Devices: Methods with their Fundamentals and Applications. Advanced Optical Materials, 9(14), 2100219. https://doi.org/10.1002/adom.202100219