Using MCFC for capturing CO2 from flue gases and delivering to Sabatier reactor for SNG synthesis
Main Article Content
Abstract
In contemporary power generation, enhancing efficiency and mitigating environmental contamination are of paramount importance. The imperative to curtail greenhouse gas emissions stands as a preeminent challenge within this sector. Concurrently, there is a marked surge in the exploitation of renewable energy sources, which, due to their intermittent nature, precipitates the imperative for advanced energy storage solutions. This paper introduces an integrated system designed to address both the reduction of CO2 emissions and the storage of energy. The advocated system integrates a Molten Carbonate Fuel Cell (MCFC), Solid Oxide Electrolysis Cell (SOEC), and a Sabatier reactor. The MCFC is employed for its proficient CO2 capture capabilities at the cathode, exhibiting remarkable efficiency, operational flexibility, and a high CO2 separation quotient. The SOEC is recognized for its effective hydrogen production, leveraging high operational temperatures to augment hydrogen output while diminishing electrical energy consumption through thermal energy substitution. The Sabatier reactor is utilized for catalytic methanation, transforming CO2 into Substitute Natural Gas—a compound predominantly comprising methane and hydrogen with minimal CO2 and water traces. This system facilitates the capture and utilization of over 80% of CO2 from exhaust fumes, achieving an overall energy efficiency of 71%. The system's design and off-design operational parameters were meticulously modeled and analyzed.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
References
Baranak M. and H. Atakul (2007). A basic model for analysis of molten carbonate fuel cell behavior. Journal of Power Sources, 172(2):831–839. doi: 10.1016/j.jpowsour.2007.05.027.
Campanari S. (2002). Carbon dioxide separation from high temperature fuel cell power plants. Journal of Power Sources, 112(1):273–289. doi: 10.1016/s0378-7753(02)00395-6.
Campanari, S., G. Manzolini, and P. Chiesa (2013). Using MCFC for high efficiency CO2 capture from natural gas combined cycles: Comparison of internal and external reforming. Applied Energy, 112:772–783, dec 2013. doi: 10.1016/j.apenergy.2013.01.045.
Campanari, S., P. Chiesa, and G. Manzolini (2010). CO2 capture from combined cycles integrated with Molten Carbonate Fuel Cells. International Journal of Greenhouse Gas Control, 4(3):441–451. doi: 10.1016/j.ijggc.2009. 11.007.
Cao X.G. and H. Y. Zhang (2012). Development of Solid Oxide Electrolyzer Cell (SOEC) Cathode Materials. Advanced Materials Research, 476-478:1802–1805. doi: 10.4028/www.scientific.net/amr.476-478.1802.
D. Schlereth and O. Hinrichsen (2014). A fixed-bed reactor modeling study on the methanation of CO2.Chemical Engineering Research and Design, 92(4):702–712. doi: 10.1016/j.cherd.2013.11.014.
D. Sun and D. S. Simakov (2017). Thermal management of a Sabatier reactor for CO2 conversion into CH4: Simulation based analysis. Journal of CO2 Utilization, 21:368–382, oct 2017. doi: 10.1016/j.jcou.2017.07.015.
Elliott, D (2017). Energy Storage Systems. In Energy Storage Systems. IOP Publishing. doi: 10.1088/978-07503-1531-9ch1.
Feron P.H. and C. A. Hendriks (2005). CO2 Capture Process Principles and Costs. Oil & Gas Science and Technology, 60(3):451–459. doi: 10.2516/ogst:2005027.
Francisco Díaz-González, Andreas Sumper, Oriol Gomis-Bellmunt Eds. (2016) Energy Storage Technologies. In Energy Storage in Power Systems, pages 93–141. John Wiley & Sons Ltd, mar 2016. doi: 10.1002/9781118971291.ch4.
Fusalba F. and S. Martinet (2013). Electrochemical Storage: Cells and Batteries. In Energy Storage, pages 173– 216. John Wiley & Sons Inc., mar 2013. doi: 10.1002/9781118557808.ch8.
Granite E.J. and T. O’Brien (2005). Review of novel methods for carbon dioxide separation from flue and fuel gases. Fuel Processing Technology, 86(14-15):1423–1434. doi: 10.1016/j.fuproc.2005.01.001.
Hammond, G., S. O. Akwe, and S. Williams (2011). Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage. Energy, 36(2):975–984. doi: 10.1016/j.energy.2010.12.012.
ICIS report (2019). The European carbon market: the impact of rising carbon prices on electricity producers and industries. Technical report, 2019.
Junaedi, C., K. Hawley, D. Walsh, S. Roychoudhury, M. Abney, and J. Perry (2011). Compact and Lightweight Sabatier Reactor for Carbon Dioxide Reduction. In 41st International Conference on Environmental Systems. American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2011-5033.
Lee C.-G. (2013). Effect of temperature on the cathodic overpotential in a molten carbonate fuel cell. Journal of Electroanalytical Chemistry, 701:36–42, jul 2013. doi: 10.1016/j.jelechem.2013.04.025.
Lee, C.-G., D.-H. Kim, and H.-C. Lim (2007). Electrode Reaction Characteristics under Pressurized Conditions in a Molten Carbonate Fuel Cell. Journal of The Electrochemical Society, 154(4): B396. doi: 10.1149/1.2434688.
Lim, R.J., M. Xie, M. A. Sk, J.-M. Lee, A. Fisher, X. Wang, and K. H. Lim (2014). A review on the electrochemical reduction of CO2 in fuel cells metal electrodes and molecular catalysts. Catalysis Today, 233:169–180. doi: 10.1016/j.cattod.2013.11.037.
Lund, H. and B. V. Mathiesen (2012). The role of Carbon Capture and Storage in a future sustainable energy system. Energy, 44(1):469–476. doi: 10.1016/j.energy.2012.06.002.
Milewski, J. (2011a). SOFC Modeling. In Advanced Methods of Solid Oxide Fuel Cell Modeling, pages 91–200. Springer London, 2011. doi: 10.1007/978-0-85729-262-9 5
Milewski, J. and W. Bujalski (2012). Reducing COlesssubgreater2less/subgreater Emissions from Flue Gases using a Molten Carbonate Fuel Cell. In Power and Energy Systems. ACTAPRESS. doi: 10.2316/p.2012.775-057.
Milewski, J., K. Swirski, M. Santarelli, and P. Leone (2011b). Advanced Methods of Solid Oxide Fuel Cell Modeling. Springer London. doi: 10.1007/978-0-85729-262-9.
Milewski, J., M. Wo lowicz, A. Miller, and R. Bernat (2013d). A reduced order model of Molten Carbonate Fuel Cell: A proposal. International Journal of Hydrogen Energy, 38(26):11565–11575. doi: 10.1016/j.ijhydene. 2013.06.002.
Milewski, J., M. Wo lowicz, and J. Lewandowski (2013c). Solid Oxide Electrolysis Cell Systems — Variant Analysis of the Structures and Parameters. Applied Mechanics and Materials, 459:106–112. doi: 10.4028/www. scientific.net/amm.459.106.
Milewski, J., R. Bernat, and J. Lewandowski (2013a). Molten Carbonate Fuel Cell as a Reducer of CO $$ 2$$ 2 Emissions from Gas Turbine Power Plants. In Lecture Notes in Electrical Engineering, pages 159–170. Springer Netherlands, 2013. doi: 10.1007/978-94-007-6190-2 13.
Milewski, J., T. Swiercz, K. Badyda, A. Miller, A. Dmowski, and P. Biczel (2010). The control strategy for a molten´ carbonate fuel cell hybrid system. International Journal of Hydrogen Energy, 35(7):2997–3000. doi: 10.1016/j.ijhydene.2009.06.040.
Milewski, J., W. Bujalski, M. Wo lowicz, K. Futyma, J. Kucowski, and R. Bernat (2013b). Experimental Investigation of CO2 Separation from Hard Coal Flue Gases by 100 cm2 Molten Carbonate Fuel Cell. Applied Mechanics and Materials, 302:97– 103, doi: 10.4028/www.scientific.net/amm.302.97.
Muller, K., M. Fleige, F. Rachow, and D. Schmeißer (2013). Sabatier based CO2-methanation of Flue Gas Emitted by Conventional Power Plants. Energy Procedia, 40:240–248. doi: 10.1016/j.egypro.2013.08.028.
Nakajima, Y., N. Fujimoto, S. Hasegawa, and T. Usui (2017). Advanced Alkaline Water Electrolyzer for Renewable Hydrogen Production. ECS Transactions, 80(10):835–841. doi: 10.1149/08010.0835ecst.
Parlamen, E. (2003). Directive 2003/87/EC of the European parliament and of the council. 2003.
Pichler H. (1943). Accounting in hydrogenation.
Ren, J., H. Guo, J. Yang, Z. Qin, J. Lin, and Z. Li (2015). Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory. Applied Surface Science, 351:504–516. doi: 10.1016/j.apsusc.2015.05.173.
Romano, M.C., V. Spallina, and S. Campanari (2011). Integrating IT-SOFC and gasification combined cycle with methanation reactor and hydrogen firing for near zero-emission power generation from coal. Energy Procedia, 4:1168–1175. doi: 10.1016/j.egypro.2011.01.170.
Ronsch, S., J. Schneider, S. Matthischke, M. Schluter, M. Gotz, J. Lefebvre, P. Prabhakaran, and S. Bajohr (2016). Review on methanation – From fundamentals to current projects. Fuel, 166:276–296. doi: 10.1016/j. fuel.2015.10.111.
Rostrup-Nielsen, J., K. Pedersen, and J. Sehested (2007). High temperature methanationSintering and structure sensitivity. Applied Catalysis A: General, 330:134–138. doi: 10.1016/j.apcata.2007.07.015.
Sabatier, J.S.P. (1902). New methane synthesis. C.R. Acad. Sci. Paris, 134.
Sang, J. C., Hae, J. K., Kim, S.-J., Park, S.-B., Dong, H. P. and Huh, Do (2011). Adsorbed Carbon Formation and Carbon Hydrogenation for CO2 Methanation on the Ni(111) Surface: ASED-MO Study 2005-11, Bulletin of the Korean Chemical Society, 26.
Schiebahn, S., T. Grube, M. Robinius, V. Tietze, B. Kumar, and D. Stolten (2015). Power to gas: Technological overview systems analysis and economic assessment for a case study in Germany. International Journal of Hydrogen Energy, 40(12):4285–4294. doi: 10.1016/j.ijhydene.2015.01.123.
Schiller, M. (2014). Hydrogen Energy Storage: A New Solution to the Renewable Energy Intermittency Problem. Renewable Energy World. Referred, 20:2017, 2014.
Stangeland, K., D. Kalai, H. Li, and Z. Yu. (2017). CO2 Methanation: The Effect of Catalysts and Reaction Conditions. Energy Procedia, 105:2022–2027, may 2017. doi: 10.1016/j.egypro.2017.03.577.
Tada, S., O. J. Ochieng, R. Kikuchi, T. Haneda, and H. Kameyama (2014). Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts. International Journal of Hydrogen Energy, 39(19):10090–10100, doi: 10.1016/j.ijhydene.2014.04.133.