Characterization of Electrochemically Active Bacteria Utilizing Redox Response in Microbial Electrolysis Cell

Main Article Content

Bachira Abada
Amina Saidi

Abstract

This study focuses on micro-electrochemical screening to select microbial strains capable of directly transfer electrons to the working electrode dependent on specific enzymatic machinery. The main objective of this work is to select and identify promising strains for allow the bioelectrolysis production of hydrogen. To achieve this goal, microbial composites (artificial biofilms), have been developed using Escherichia coli CGE1 from LCPME. CNRS Fransh, Pseudomonas putrifisciens (CIP 69.13) (CIP, Collection Institut Pasteur, Fransh). Shewanella oneidensis MR-1 (ATCC 700550), and Thiobacillus denitrificans, from (ATCC, American Type Culture Collection), each one enclosed in a matrix carbon nanotubes and protamine matrix, forming an artificial biofilm on buckypaper. Cyclic Voltammetry (CV) measurements were performed over a potential range of +0.4 to -0.7V at 5mV/s under 30°C, using a saturated KCl Ag/AgCl reference electrode and a stainless-steel grid counter electrode. For E. coli and P. putrifisciens, the measurement focused on the oxidation of 20mM glucose, while the former bacteria were growth with and without O2. For S. oneidensis and T. denitrificans the focus was on the reduction of fumarate and 20 mM of NaNOH3+, respectively. As results, E. coli and P. putrifisciens species show no notable electrochemical activity, with no signal of glucose oxidation, due to the absence of type C cytochromes in the cytoplasmic membrane, unlike S. oneidensis and T. denitrificans, that demonstrate a direct electron transfer.

Article Details

How to Cite
[1]
B. . Abada and A. . Saidi, “Characterization of Electrochemically Active Bacteria Utilizing Redox Response in Microbial Electrolysis Cell”, J. Ren. Energies, vol. 1, no. 1, pp. 281 -, Sep. 2024.
Section
special

References

Abrevaya, X. C., Sacco, N. J., Bonetto, M. C., Hilding-Ohlsson, A., & Cortón, E. (2015). Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses. Biosensors & bioelectronics, 63, 591–601. https://doi.org/10.1016/j.bios.2014.04.053

Bond, D. R., Holmes, D. E., Tender, L. M., & Lovley, D. R. (2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Science (New York, N.Y.), 295(5554), 483–485. https://doi.org/10.1126/science.1066771

El-Naggar, M. Y., Wanger, G., Leung, K. M., Yuzvinsky, T. D., Southam, G., Yang, J., Lau, W. M., Nealson, K. H., & Gorby, Y. A. (2010). Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18127–18131. https://doi.org/10.1073/pnas.1004880107

Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S., Culley, D. E., et al (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11358–11363. https://doi.org/10.1073/pnas.0604517103

Kizys K, Zinovicius A, Jakstys B, Bruzaite I, Balciunas E, Petruleviciene M, Ramanavicius A, Morkvenaite-Vilkonciene I. Microbial Biofuel Cells: Fundamental Principles, Development and Recent Obstacles. Biosensors (Basel). 2023 Feb 3;13(2):221. doi: 10.3390/bios13020221. PMID: 36831987; PMCID: PMC9954062.

Lampa-Pastirk, S., Veazey, J. P., Walsh, K. A., Feliciano, G. T., Steidl, R. J., Tessmer, S. H., & Reguera, G. (2016). Thermally activated charge transport in microbial protein nanowires. Scientific reports, 6, 23517. https://doi.org/10.1038/srep23517

Logan B.E., Rabaey. K. (2012); Conversion of wastes in to bio electricity and chemicals by usingmicrobial electrochemical technologies, Science 2012;337, 686–690. doi.org/10.1126/science.1217412

Lovley, D. R., & Nevin, K. P. (2013). Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Current opinion in biotechnology, 24(3), 385–390. https://doi.org/10.1016/j.copbio.2013.02.012

Malvankar, N. S., Yalcin, S. E., Tuominen, M. T., & Lovley, D. R. (2014). Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy. Nature nanotechnology, 9(12), 1012–1017. https://doi.org/10.1038/nnano.2014.236

Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R. L., Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., El-Naggar, M. Y., Leung, K. M., Schramm, A., Risgaard-Petersen, N., & Nielsen, L. P. (2012). Filamentous bacteria transport electrons over centimetre distances. Nature, 491(7423), 218–221. https://doi.org/10.1038/nature11586

Pirbadian, S., Barchinger, S. E., Leung, K. M., Byun, H. S., Jangir, Y., Bouhenni, R. A., Reed, S. B., Romine, M. F., Saffarini, D. A., Shi, L., Gorby, Y. A., Golbeck, J. H., & El-Naggar, M. Y. (2014).

Potter M.C. (1911) Electrical effects accompanying the decomposition of organic compounds, Proc. R. Soc. London. Ser. B. Contain. Pap. a Biol. Character. 1911; 84, 260–276. doi.org/10.1098/rspb.1911.0073

Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., & Lovley, D. R. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435(7045), 1098–1101. https://doi.org/10.1038/nature03661

Schroder U.(2011) Discover the possibilities: microbial bioelectrochemical systems and the revival of a 100-year–olddiscovery, J. Solid State Electrochem. 2011;15, 1481–1486. doi.org/10.1007/s10008-011-1395-7

Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences of the United States of America, 111(35), 12883–12888. https://doi.org/10.1073/pnas.1410551111

Steidl, R. J., Lampa-Pastirk, S., & Reguera, G. (2016). Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires. Nature communications, 7, 12217. https://doi.org/10.1038/ncomms12217

Wang, H., Park, J. D., & Ren, Z. J. (2015). Practical energy harvesting for microbial fuel cells: a review. Environmental science & technology, 49(6), 3267–3277. https://doi.org/10.1021/es5047765

Yates, M. D., Strycharz-Glaven, S. M., Golden, J. P., Roy, J., Tsoi, S., Erickson, J. S., El-Naggar, M. Y., Barton, S. C., & Tender, L. M. (2016). Measuring conductivity of living Geobacter sulfurreducens biofilms. Nature nanotechnology, 11(11), 910–913. https://doi.org/10.1038/nnano.2016.186