Characterization of Electrochemically Active Bacteria Utilizing Redox Response in Microbial Electrolysis Cell
Main Article Content
Abstract
This study focuses on micro-electrochemical screening to select microbial strains capable of directly transfer electrons to the working electrode dependent on specific enzymatic machinery. The main objective of this work is to select and identify promising strains for allow the bioelectrolysis production of hydrogen. To achieve this goal, microbial composites (artificial biofilms), have been developed using Escherichia coli CGE1 from LCPME. CNRS Fransh, Pseudomonas putrifisciens (CIP 69.13) (CIP, Collection Institut Pasteur, Fransh). Shewanella oneidensis MR-1 (ATCC 700550), and Thiobacillus denitrificans, from (ATCC, American Type Culture Collection), each one enclosed in a matrix carbon nanotubes and protamine matrix, forming an artificial biofilm on buckypaper. Cyclic Voltammetry (CV) measurements were performed over a potential range of +0.4 to -0.7V at 5mV/s under 30°C, using a saturated KCl Ag/AgCl reference electrode and a stainless-steel grid counter electrode. For E. coli and P. putrifisciens, the measurement focused on the oxidation of 20mM glucose, while the former bacteria were growth with and without O2. For S. oneidensis and T. denitrificans the focus was on the reduction of fumarate and 20 mM of NaNOH3+, respectively. As results, E. coli and P. putrifisciens species show no notable electrochemical activity, with no signal of glucose oxidation, due to the absence of type C cytochromes in the cytoplasmic membrane, unlike S. oneidensis and T. denitrificans, that demonstrate a direct electron transfer.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
References
Abrevaya, X. C., Sacco, N. J., Bonetto, M. C., Hilding-Ohlsson, A., & Cortón, E. (2015). Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses. Biosensors & bioelectronics, 63, 591–601. https://doi.org/10.1016/j.bios.2014.04.053
Bond, D. R., Holmes, D. E., Tender, L. M., & Lovley, D. R. (2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Science (New York, N.Y.), 295(5554), 483–485. https://doi.org/10.1126/science.1066771
El-Naggar, M. Y., Wanger, G., Leung, K. M., Yuzvinsky, T. D., Southam, G., Yang, J., Lau, W. M., Nealson, K. H., & Gorby, Y. A. (2010). Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18127–18131. https://doi.org/10.1073/pnas.1004880107
Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S., Culley, D. E., et al (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11358–11363. https://doi.org/10.1073/pnas.0604517103
Kizys K, Zinovicius A, Jakstys B, Bruzaite I, Balciunas E, Petruleviciene M, Ramanavicius A, Morkvenaite-Vilkonciene I. Microbial Biofuel Cells: Fundamental Principles, Development and Recent Obstacles. Biosensors (Basel). 2023 Feb 3;13(2):221. doi: 10.3390/bios13020221. PMID: 36831987; PMCID: PMC9954062.
Lampa-Pastirk, S., Veazey, J. P., Walsh, K. A., Feliciano, G. T., Steidl, R. J., Tessmer, S. H., & Reguera, G. (2016). Thermally activated charge transport in microbial protein nanowires. Scientific reports, 6, 23517. https://doi.org/10.1038/srep23517
Logan B.E., Rabaey. K. (2012); Conversion of wastes in to bio electricity and chemicals by usingmicrobial electrochemical technologies, Science 2012;337, 686–690. doi.org/10.1126/science.1217412
Lovley, D. R., & Nevin, K. P. (2013). Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Current opinion in biotechnology, 24(3), 385–390. https://doi.org/10.1016/j.copbio.2013.02.012
Malvankar, N. S., Yalcin, S. E., Tuominen, M. T., & Lovley, D. R. (2014). Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy. Nature nanotechnology, 9(12), 1012–1017. https://doi.org/10.1038/nnano.2014.236
Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R. L., Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., El-Naggar, M. Y., Leung, K. M., Schramm, A., Risgaard-Petersen, N., & Nielsen, L. P. (2012). Filamentous bacteria transport electrons over centimetre distances. Nature, 491(7423), 218–221. https://doi.org/10.1038/nature11586
Pirbadian, S., Barchinger, S. E., Leung, K. M., Byun, H. S., Jangir, Y., Bouhenni, R. A., Reed, S. B., Romine, M. F., Saffarini, D. A., Shi, L., Gorby, Y. A., Golbeck, J. H., & El-Naggar, M. Y. (2014).
Potter M.C. (1911) Electrical effects accompanying the decomposition of organic compounds, Proc. R. Soc. London. Ser. B. Contain. Pap. a Biol. Character. 1911; 84, 260–276. doi.org/10.1098/rspb.1911.0073
Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., & Lovley, D. R. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435(7045), 1098–1101. https://doi.org/10.1038/nature03661
Schroder U.(2011) Discover the possibilities: microbial bioelectrochemical systems and the revival of a 100-year–olddiscovery, J. Solid State Electrochem. 2011;15, 1481–1486. doi.org/10.1007/s10008-011-1395-7
Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences of the United States of America, 111(35), 12883–12888. https://doi.org/10.1073/pnas.1410551111
Steidl, R. J., Lampa-Pastirk, S., & Reguera, G. (2016). Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires. Nature communications, 7, 12217. https://doi.org/10.1038/ncomms12217
Wang, H., Park, J. D., & Ren, Z. J. (2015). Practical energy harvesting for microbial fuel cells: a review. Environmental science & technology, 49(6), 3267–3277. https://doi.org/10.1021/es5047765
Yates, M. D., Strycharz-Glaven, S. M., Golden, J. P., Roy, J., Tsoi, S., Erickson, J. S., El-Naggar, M. Y., Barton, S. C., & Tender, L. M. (2016). Measuring conductivity of living Geobacter sulfurreducens biofilms. Nature nanotechnology, 11(11), 910–913. https://doi.org/10.1038/nnano.2016.186