Heat Transfer Enhancement for Rarefied Flow Within a Microchannel Featuring Obstructions

Main Article Content

Siham Hammid
Khatir Naima
Abdelkrim Liazid
Cheikh Kezrane

Abstract

The present study investigates forced convection heat transfer of rarefied flow within a microchannel containing obstacles using the thermal lattice Boltzmann method using a double distribution function model and BGK approximation. Slip velocity and temperature jump conditions were employed across microchannel walls. The microchannel temperature and velocity input are constant. The microchannel configuration has three obstacles imposed along the lower microchannel wall. The study simulates rarefied fluid flow and heat transmission of forced convection inside the microchannel, considering separation between obstacles as the primary study objective. The findings represent the distribution of temperature and velocity. In addition, temperature jump and slip velocity in the function of Knudsen numbers were also represented. The findings highlight the substantial influence of barriers on temperature and velocity. As the distance between obstacles drops, the temperature diminishes. Additionally, a rise in separation distances significantly aids in the dropping of velocity. The results reveal a significant reduction in slip velocity as Knudsen numbers increase across the microchannel length. The outcomes of the present investigation could assist and be used as a cooling solution for various technologies, such as microelectronics and nanoelectromechanical systems. Additionally, the suggested configuration might be utilized to improve microfluidic device design.

Article Details

How to Cite
[1]
S. . Hammid, K. . Naima, A. . Liazid, and C. . Kezrane, “Heat Transfer Enhancement for Rarefied Flow Within a Microchannel Featuring Obstructions”, J. Ren. Energies, vol. 1, no. 3, pp. 101 -, Oct. 2024.
Section
special

References

Abaszadeh, M., Safavinejad, A., Amiri, H., & Amiri Delouei, A. (2022). A direct-forcing IB-LBM implementation for thermal radiation in irregular geometries. Journal of Thermal Analysis and Calorimetry, 147(20), 11169-11181. Doi:10.1007/s10973-022-11328-1

Afra, B., Delouei, A. A., & Tarokh, A. (2022). Flow-Induced Locomotion of a Flexible Filament in the Wake of a Cylinder in Non-Newtonian Flows. International Journal of Mechanical Sciences, 234, 107693. Doi: https://doi.org/10.1016/j.ijmecsci.2022.107693

Afra, B., Karimnejad, S., Delouei, A. A., & Tarokh, A. (2022). Flow control of two tandem cylinders by a highly flexible filament: Lattice spring IB-LBM. Ocean Engineering, 250, 111025. Doi: https://doi.org/10.1016/j.oceaneng.2022.111025

Bala, S. K., Saha, L. K., & Anwar Hossain, M. (2019). Simulation of forced convection in a channel containing three obstacles over backward and forward facing steps by LBM. International Journal of Applied and Computational Mathematics, 5(2), 1-19. Doi: https://doi.org/10.1007/s40819-019-0622-2

Behnampour, A., Akbari, O. A., Safaei, M. R., Ghavami, M., Marzban, A., Shabani, G. A. S., & Mashayekhi, R. (2017). Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs. Physica E: Low-Dimensional Systems and Nanostructures, 91, 15-31. Doi: https://doi.org/10.1016/j.physe.2017.04.006

Duan, Z., Ma, H., He, B., Su, L., & Zhang, X. (2019). Pressure drop of microchannel plate fin heat sinks. Micromachines, 10(2), 80. Doi: https://doi.org/10.3390/mi10020080

Gao, Y., Yu, Y., Yang, L., Qin, S., & Hou, G. (2021). Development of a coupled simplified lattice Boltzmann method for thermal flows. Computers & Fluids, 229, 105042. Doi: https://doi.org/10.1016/j.compfluid.2021.105042

Ghadirzadeh, S., & Kalteh, M. (2017). Lattice Boltzmann simulation of temperature jump effect on the nanofluid heat transfer in an annulus microchannel. International Journal of Mechanical Sciences, 133, 524-534. Doi: https://doi.org/10.1016/j.ijmecsci.2017.09.013

Hammid, S., Naima, K., Alqahtani, S., Alshehery, S., Oudah, K. H., Ikumapayi, O. M., & Menni, Y. (2024). Laminar rarefied flow analysis in a microchannel with H2O-Cu nanofluid: A thermal lattice Boltzmann study. Modern Physics Letters B, 38(03), 2450006. Doi: https://doi.org/10.1142/s0217984924500064

Hammid, S., Naima, K., Ikumapayi, O. M., Kezrane, C., Liazid, A., Asad, J., . . . Menni, Y. (2024). Overall Assessment of Heat Transfer for a Rarefied Flow in a Microchannel with Obstacles Using Lattice Boltzmann Method. Comput. Model. Eng. Sci, 138, 273-299. Doi: https://doi.org/10.32604/cmes.2023.028951

Hammid, S., Naima, K., Menni, Y., Kezrane, C., Liazid, A., Al-Dujaili, A. Q., . . . Shoja, S. J. (2023). Advanced numerical analysis of convective rarefied flows in microchannels: Studying the impact of multiple obstacle arrangements through LBM modeling. Modern Physics Letters B, 37(27), 2350099. Doi: https://doi.org/10.1142/s0217984923500999

Islam, S.-U., Ullah, N., & Zhou, C. Y. (2021). Numerical analysis of blockage effects on the flow between parallel plates by using lattice Boltzmann method. Canadian Journal of Physics, 99(6), 399-411. Doi: https://doi.org/10.1139/cjp-2020-0240

Kmiotek, M., & Kucaba-Pietal, A. (2018). Influence of slim obstacle geometry on the flow and heat transfer in microchannels. Bulletin of the Polish Academy of Sciences: Technical Sciences(2) Doi: 10.24425/119064

Li, L., Mei, R., & Klausner, J. F. (2013). Boundary conditions for thermal lattice Boltzmann equation method. Journal of Computational Physics, 237, 366-395. Doi: https://doi.org/10.1016/j.jcp.2012.11.027

Li, L., Mei, R., & Klausner, J. F. (2017). Lattice Boltzmann models for the convection-diffusion equation: D2Q5 vs D2Q9. International Journal of Heat and Mass Transfer, 108, 41-62. Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.092

Liu, Y. (2012). A lattice Boltzmann model for blood flows. Applied Mathematical Modelling, 36(7), 2890-2899. Doi: https://doi.org/10.1016/j.apm.2011.09.076

Lori, M. S., & Vafai, K. (2022). Heat Transfer and Fluid Flow Analysis of Microchannel Heat Sinks with Periodic Vertical Porous Ribs. Applied Thermal Engineering, 118059. Doi: https://doi.org/10.1016/j.applthermaleng.2022.118059

Roohi, E., & Darbandi, M. (2009). Extending the Navier–Stokes solutions to transition regime in two-dimensional micro-and nanochannel flows using information preservation scheme. Physics of fluids, 21(8), 082001. Doi: https://doi.org/10.1063/1.3177351

Sadique, H., & Murtaza, Q. (2022). Heat transfer augmentation in microchannel heat sink using secondary flows: A review. International Journal of Heat and Mass Transfer, 194, 123063. Doi:https://doi.org/10.1016/j.ijheatmasstransfer.2022.123063

Samanta, R., Chattopadhyay, H., & Guha, C. (2022). A review on the application of lattice Boltzmann method for melting and solidification problems. Computational Materials Science, 206, 111288. Doi: https://doi.org/10.1016/j.commatsci.2022.111288

Sharma, K. V., Straka, R., & Tavares, F. W. (2020). Current status of Lattice Boltzmann Methods applied to aerodynamic, aeroacoustic, and thermal flows. Progress in Aerospace Sciences, 115, 100616. Doi: https://doi.org/10.1016/j.paerosci.2020.100616

Sohankar, A., Joulaei, A., & Mahmoodi, M. (2022). Fluid flow and convective heat transfer in a rotating rectangular microchannel with various aspect ratios. International Journal of Thermal Sciences, 172, 107259. Doi:https://doi.org/10.1016/j.ijthermalsci.2021.107259

Taassob, A., Kamali, R., & Bordbar, A. (2018). Investigation of rarefied gas flow through bended microchannels. Vacuum, 151, 197-204. Doi: https://doi.org/10.1016/j.vacuum.2018.02.021

Wang, K., Chai, Z., Hou, G., Chen, W., & Xu, S. (2018). Slip boundary condition for lattice Boltzmann modeling of liquid flows. Computers & Fluids, 161, 60-73. Doi:https://doi.org/10.1016/j.compfluid.2017.11.009

Zarita, R., & Hachemi, M. (2018). Numerical investigation and analysis of heat transfer enhancement in a microchannel using nanofluids by the lattice Boltzmann method. Frontiers in Heat and Mass Transfer (FHMT), 12. Doi: https://doi.org/10.5098/hmt.12.5

Zhu, Q., Jin, Y., Chen, J., Su, R., Zhu, F., Li, H., . . . Cui, Y. (2021). Computational study of rib shape and configuration for heat transfer and fluid flow characteristics of microchannel heat sinks with fan-shaped cavities. Applied Thermal Engineering, 195, 117171. Doi: https://doi.org/10.1016/j.applthermaleng.2021.117171