Proton Exchange Membrane Fuel Cells: An Effective Neural Fuzzy System for Optimal Power Tracking

Main Article Content

Assala Bouguerra
Abd Essalam Badoud
Saad Mekheilef

Abstract

The revolutionary future of proton-exchanging membrane fuel cells (PEMFC) has recently garnered a great deal of excitement, as has their green energy source. Maximizing the production of electricity from PEMFC is crucial to maintaining effectiveness. This research article thoroughly analyzes a research study using a strategy known as MPPT, or maximum power point tracking that uses the neuro-fuzzy method for PEMFC operating under diverse temperatures, pressures, and joining constraints. The neuro-fuzzy controller cleverly regulates the point of maximal operation of a hydrogen fuel cell system, allowing exact adherence to the highest possible power scale. According to simulation results, the neuro-fuzzy MPPT technique improves PEMFC validity across a wide range of operating scenarios.

Article Details

How to Cite
[1]
A. . Bouguerra, A. E. . Badoud, and S. . Mekheilef, “Proton Exchange Membrane Fuel Cells: An Effective Neural Fuzzy System for Optimal Power Tracking”, J. Ren. Energies, vol. 1, no. 3, pp. 151 -, Oct. 2024.
Section
special

References

Aboshosha, A., Gouda, M.M., Awad, H. and Hamad, H.A. (2023). AI based Metaheuristic Optimization of PEMFC Control System for Robust and EEcient Operation. doi: 10.21203/rs.3.rs-3159560/v1.

Badoud, A.E., Merahi, F., Ould Bouamama, B. and Mekhilef, S. (2021). Bond graph modeling, design and experimental validation of a photovoltaic/fuel cell/ electrolyzer/battery hybrid power system,” Int J Hydrogen Energy, 46(47), 24011–24027. doi: 10.1016/j.ijhydene.2021.05.016.

Badoud, A.E., Mekhilef, S. and Ould Bouamama, B. (2022). A Novel Hybrid MPPT Controller Based on Bond Graph and Fuzzy Logic in Proton Exchange Membrane Fuel Cell System: Experimental Validation. Arab J Sci Eng, 47(3), 3201–3220. doi: 10.1007/s13369-021-06096-3.

Egiziano, L. et al. (2009). Optimization of perturb and observe control of grid connected PEM fuel cells. International Conference on Clean Electrical Power, 176, 775–781. doi:10.1109/iccep.2009.5211962

Gugulothu, R., Nagu, B. and Pullaguram, D. (2022). A computationally efficient jaya optimization for fuel cell maximum power tracking. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 44(1), 1541–1565. doi: 10.1080/15567036.2022.2055229.

He, C., Wen, Q., Ning, F., Shen, M., He, L., Li, Y., Tian, B., Pan, S., Dan, X., Li, W., Xu, P., Liu, Y., Chai, Z., Zhang, Y., Liu, W., and Zhou, X. (2023). A New Integrated GDL with Wavy Channel and Tunneled Rib for High Power Density PEMFC at Low Back Pressure and Wide Humidity. Advanced Science, 10(28). doi: 10.1002/advs.202302928.

Kanouni, B., Badoud, A.E. and Mekhilef, S. (2021). Fuzzy logic MPPT control algorithm for a Proton Exchange Membrane Fuel Cells System. Algerian Journal of Renewable Energy and Sustainable Development, 3(1), 13–22. doi: 10.46657/ajresd.2021.3.1.2.

Kanouni, B., Badoud, A.E. and Mekhilef, S. (2022). A multi-objective model predictive current control with two-step horizon for double-stage grid-connected inverter PEMFC system. Int J Hydrogen Energy, 47(4), 2685–2707. doi: 10.1016/j.ijhydene.2021.10.182.

Karthikeyan, B., Sundararaju, K. and Palanisamy, R. (2021). ANN-Based MPPT Controller for PEM Fuel Cell Energized Interleaved Resonant PWM High Step Up DC-DC Converter with SVPWM Inverter Fed Induction Motor Drive. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 45(3), 861–877. doi: 10.1007/s40998-021-00413-0.

Khelifi, B., Ben Salem, F., Zdiri, M.A., Salem, B. and Abdallah, H.H. (2021). A Stand-Alone PV-PEMFC System Based SMANN-MPPT Controller: Solar Pumping Application Using PMSM. International Journal of Renewable Energy Research. 11(2), 662-672. Available at https://www.researchgate.net/publication/352538989

Li, C., Lin, W., Wu, H., Li, Y., Zhu, W., Xie, C., Gooi, H. B., Zhao, B., and Zhang, L.. (2023). Performance degradation decomposition-ensemble prediction of PEMFC using CEEMDAN and dual data-driven model. Renew Energy, 215. doi: 10.1016/j.renene.2023.118913.