Implementing Crowbar Protection To Maintain System Stability In Doubly Fed Induction Generator Wind Turbines

Main Article Content

Nassira Medjadji
Driss Meddah Medjahed
Abdelkader Mahamedi
Kaddour Abdelmajid
Mostapha Yahiaoui
Abdelkader Aris

Abstract

Doubly fed induction generator (DFIG) wind turbines play a crucial role in wind energy production. However, system stability during symmetrical voltage dips remains a significant challenge. This research area focuses on enhancing protection and regulation strategies to ensure that DFIG wind turbines operate stably and efficiently even when the electrical grid experiences disturbances. In-depth simulations and behavioral analyses are utilized to propose effective control solutions, minimizing the impact of voltage dips without compromising system stability. The findings from these studies are essential for wind turbine manufacturers and operators, contributing to the overall improvement of wind energy systems.

Article Details

How to Cite
[1]
N. . Medjadji, D. M. . Medjahed, A. . Mahamedi, K. . Abdelmajid, M. . Yahiaoui, and A. . Aris, “Implementing Crowbar Protection To Maintain System Stability In Doubly Fed Induction Generator Wind Turbines”, J. Ren. Energies, vol. 1, no. 3, pp. 165 -, Oct. 2024.
Section
special

References

Abad, G., et al. (2011). Doubly Fed Induction Generators Control for Wind Energy. Hoes Lane Piscataway, 633 p.

Canudas de Wit, C. (2000). Commande des moteurs asynchrone, Modélisation contrôle vectoriel et DTC (Vol. 1). Lavoisier, Paris.

Caron, J.P., & Hautier, J.P. (1995). Electrotechnique: Modélisation et commande de la machine asynchrone. Presses Universitaires de Strasbourg.

Chatelain, J. (1990). Machines Electriques.

Csanyi, E. (2013, June 7). Impacts of voltage dips on power quality problems. Electrical Engineering Portal. http://electrical-engineering-portal.com/impacts-of-voltage-dips-on-power-quality-problems

Hofmann, W., & Okafor, F. (2001). Optimal control of doubly-fed full-controlled induction wind generator with high efficiency. IECON'01: 27th Annual Conference of the IEEE Industrial Electronics Society, 1213–1218. https://doi.org/10.1109/IECON.2001.975955

Hughes, A. (2005). Electric motors and drives: Fundamentals, types, and applications. Energy Conversion Management, 101, 681–688.

Idjdarene, K., Tounzi, A., Rekioua, D., & Rekioua, T. (2008). Vector control of autonomous induction generator taking saturation effect into account. Energy Conversion and Management.

Karad, S., & Thakur, R. (2021). Recent trends of control strategies for doubly fed induction generator based wind turbine systems: A comparative review. Arch Computat Methods Eng, 28, 15–29. https://doi.org/10.1007/s11831-019-09367-3

Rabelo, B., Hofmann, W., Silva, J. L., Oliveira, R. G., & Silva, S. R. (2008). Reactive power control in doubly-fed induction generators for wind turbines. IEEE Power Electronics Specialists Conference, 106-112. https://doi.org/10.1109/PESC.2008.4591908

Seyoum, D., Grantham, C., & Rahman, M. F. (2003). The dynamic characteristics of an isolated self-excited induction generator driven by a wind turbine. IEEE Transactions on Industry Applications.

Tamvada, K., & Babu, R. (2022). Control of doubly fed induction generator for power quality improvement: An overview. International Journal of System Assurance Engineering and Management, 13, 2809–2832. https://doi.org/10.1007/s13198-022-01754-7