Improved Sliding Mode Control of a Wind Turbine System Based on a Developed Permanent Magnet Synchronous Generator
Main Article Content
Abstract
Wind energy conversion systems (WECS) are emerging as among the most reliable alternative energy sources, requiring innovative control strategies to improve performance and reduce operating costs. The objective of this paper is the implementation of sliding mode control (SMC) for a permanent magnet synchronous generator (PMSG) to optimize the dynamical response and wind turbine system (WTS) stability. The control architecture comprises the PMSG, an AC-DC power converter, and a DC bus link, with a particular focus on extracting the optimum wind turbine power during variable wind speeds. A complete system model was developed and tested in MATLAB for a PMSG of 2 MW subjected to uncertain fluctuations in wind speed. The simulation results confirm that the SMC technique significantly improves speed-tracking accuracy, minimizes current ripple, and improves overall system stability. In addition, the proposed method ensures robust performance under non-linear and uncertain conditions, making it a viable solution for large-scale wind applications. These results highlight the potential of SMC to enhance the accuracy and efficiency of the WECS.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
References
Achar, A., Djeriri, Y., Benbouhenni, H., Bouddou, R., & Elbarbary, Z. M. S. (2024). Modified Vector-Controlled DFIG Wind Energy System Using Robust Model Predictive Rotor Current Control. Arabian Journal for Science and Engineering, 1-25.
Apata, O., & Oyedokun, D. T. O. (2020). An overview of control techniques for wind turbine systems. Scientific African, 10, e00566.
Balbino, A. J., Nora, B. D. S., & Lazzarin, T. B. (2021). An improved mechanical sensorless maximum power point tracking method for permanent-magnet synchronous generator-based small wind turbines systems. IEEE Transactions on Industrial Electronics, 69(5), 4765-4775.
Barelli, L., Ciupageanu, D. A., Ottaviano, A., Pelosi, D., & Lazaroiu, G. (2020). Stochastic power management strategy for hybrid energy storage systems to enhance large-scale wind energy integration. Journal of energy storage, 31, 101650.
Belabbes, A., Laidani, A., Yachir, A., Bouzid, A. E. M., Bouddou, R., & Litim, O. A. (2024). Advanced Control of PMSG-based Wind Energy Conversion System Using Model Predictive and Sliding Mode Control. Przeglad Elektrotechniczny, 2024(2).
Belgacem, M., Khatir, M., Djehaf, M. A., Zidi, S. A., & Bouddou, R. (2021). Implementation of DC voltage controllers on enhancing the stability of multi-terminal DC grids. International Journal of Electrical and Computer Engineering (IJECE), 11(3), 1894-1904.
Benelghali, S., Benbouzid, M. E. H., Charpentier, J. F., Ahmed-Ali, T., & Munteanu, I. (2010). Experimental validation of a marine current turbine simulator: Application to a permanent magnet synchronous generator-based system second-order sliding mode control. IEEE Transactions on Industrial Electronics, 58(1), 118-126.
Benhacine, T. Z. E., Mouzai, A., Azaz, A. A., & Boudraf, M. (2024). MPPT Optimal Torque Control Strategy for a PMSG-based Wind Turbine Emulator. Journal of Renewable Energies, 289-295.
Bonfiglio, A., Delfino, F., Gonzalez-Longatt, F., & Procopio, R. (2017). Steady-state assessments of PMSGs in wind generating units. International Journal of Electrical Power & Energy Systems, 90, 87-93.
Bouddou, R., Benhamida, F., Haba, M., Belgacem, M., & Meziane, M. A. (2020). Simulated Annealing Algorithm for Dynamic Economic Dispatch Problem in the Electricity Market Incorporating Wind Energy. Ingénierie des Systèmes d Inf., 25(6), 719-727.
Boudries, Z. O. U. B. I. R., & Tamalouzt, S. (2019). Study on sliding mode control of a small-size wind turbine permanent magnet synchronous generator system. Revue Roumaine des Sciences Techniques-Serie Electrotechnique et Energetiqu, 64(2), 157-162.
Bouguerra, Z. (2023). Comparative study between PI, FLC, SMC, and Fuzzy sliding mode controllers of DFIG wind turbine. Journal of Renewable Energies, 26(2), 209-223.
Chien, F., Chau, K. Y., Sadiq, M., Diep, G. L., Tran, T. K., & Pham, T. H. A. (2023). What role renewable energy consumption, renewable electricity, energy use and import play in environmental quality?. Energy Reports, 10, 3826-3834.
Chirantan, S., & Pati, B. B. (2024). Integration of predictive and computational intelligent techniques: A hybrid optimization mechanism for PMSM dynamics reinforcement. AIMS Electronics & Electrical Engineering, 8(2).
De Siqueira, L. M. S., & Peng, W. (2021). Control strategy to smooth wind power output using battery energy storage system: A review. Journal of Energy Storage, 35, 102252.
Desalegn, B., Gebeyehu, D., & Tamrat, B. (2022). Wind energy conversion technologies and engineering approaches to enhancing wind power generation: A review. Heliyon, 8(11).
Ding, S., Park, J. H., & Chen, C. C. (2020). Second-order sliding mode controller design with output constraint. Automatica, 112, 108704.
El Attafi, A., El Alami, H., Bossoufi, B., AlQahtani, D., Motahhir, S., Almalki, M. M., & Alghamdi, T. A. (2024). Robust control of a wind energy conversion system: FPGA real-time implementation. Heliyon, 10(15).
Hannan, M. A., Al-Shetwi, A. Q., Mollik, M. S., Ker, P. J., Mannan, M., Mansor, M., ... & Mahlia, T. I. (2023). Wind energy conversions, controls, and applications: a review for sustainable technologies and directions. Sustainability, 15(5), 3986.
He, Y., Tang, Y., Gao, X., Xie, H., Wang, F., & Kennel, R. (2024). A Cascade-Free Model Predictive Control Scheme for Back-to-Back Converter-Fed PMSM Drive System. IEEE Transactions on Power Electronics.
Herrera, M., Camacho, O., Leiva, H., & Smith, C. (2020). An approach of dynamic sliding mode control for chemical processes. Journal of Process Control, 85, 112-120.
Hostettler, J., & Wang, X. (2015, July). Sliding mode control of a permanent magnet synchronous generator for variable speed wind energy conversion systems. In 2015 American Control Conference (ACC) (pp. 4982-4987). IEEE.
Infield, D., & Freris, L. (2020). Renewable energy in power systems. John Wiley & Sons.
Karami-Mollaee, A., & Barambones, O. (2024). On Neural Observer in Dynamic Sliding Mode Control of Permanent Magnet Synchronous Wind Generator. Mathematics, 12(14), 2246.
Kelkoul, B., & Boumediene, A. (2021). Stability analysis and study between classical sliding mode control (SMC) and super twisting algorithm (STA) for doubly fed induction generator (DFIG) under wind turbine. Energy, 214, 118871.
Kelkoul, B., & Boumediene, A. (2021). Stability analysis and study between classical sliding mode control (SMC) and super twisting algorithm (STA) for doubly fed induction generator (DFIG) under wind turbine. Energy, 214, 118871.
Khalid, M. (2024). Smart grids and renewable energy systems: Perspectives and grid integration challenges. Energy Strategy Reviews, 51, 101299.
Kim, D., Jeon, T., Paek, I., & Roynarin, W. (2024). Comparison of the Wind Speed Estimation Algorithms of Wind Turbines Using a Drive Train Model and Extended Kalman Filter. Applied Sciences, 14(19), 8764.
Krumbein, S., Jentzsch, M., Saverin, J., Nayeri, C. N., & Paschereit, C. O. (2024, June). The Underwater Berlin Research Turbine: A Wind Turbine Model for Wake Investigations in a Water Towing Tank. In Journal of Physics: Conference Series (Vol. 2767, No. 4, p. 042011). IOP Publishing.
Laabidine, N. Z., Errarhout, A., El Bakkali, C., Mohammed, K., & Bossoufi, B. (2021). Sliding mode control design of wind power generation system based on permanent magnet synchronous generator. International Journal of Power Electronics and Drive System (IJPEDS), 12(1), 393-403.
Lee, S. W., & Chun, K. H. (2019). Adaptive sliding mode control for PMSG wind turbine systems. Energies, 12(4), 595.
Mahmoud, M. M., Khalid Ratib, M., Aly, M. M., & Abdel-Rahim, A. M. M. (2022). Wind-driven permanent magnet synchronous generators connected to a power grid: Existing perspective and future aspects. Wind Engineering, 46(1), 189-199.
Mayilsamy, G., Palanimuthu, K., Venkateswaran, R., Antonysamy, R. P., Lee, S. R., Song, D., & Joo, Y. H. (2023). A Review of State Estimation Techniques for Grid-Connected PMSG-Based Wind Turbine Systems. Energies, 16(2), 634.
Merabet, A., Ahmed, K. T., Ibrahim, H., & Beguenane, R. (2016). Implementation of sliding mode control system for generator and grid sides control of wind energy conversion system. IEEE Transactions on Sustainable Energy, 7(3), 1327-1335.
Milles, A., Merabet, E., Benbouhenni, H., Debdouche, N., & Colak, I. (2024). Robust control technique for wind turbine system with interval type-2 fuzzy strategy on a dual star induction generator. Energy Reports, 11, 2715-2736.
Mousavi, Y., Bevan, G., Kucukdemiral, I. B., & Fekih, A. (2022). Sliding mode control of wind energy conversion systems: Trends and applications. Renewable and Sustainable Energy Reviews, 167, 112734.
Mozayan, S. M., Saad, M., Vahedi, H., Fortin-Blanchette, H., & Soltani, M. (2016). Sliding mode control of PMSG wind turbine based on enhanced exponential reaching law. IEEE Transactions on Industrial Electronics, 63(10), 6148-6159.
Mseddi, A., Dhouib, B., Zdiri, M. A., Alaas, Z., Naifar, O., Guesmi, T., ... & Alqunun, K. (2024). Exploring the Potential of Hybrid Excitation Synchronous Generators in Wind Energy: A Comprehensive Analysis and Overview. Processes, 12(6), 1186.
Mughees, N., Jaffery, M. H., & Jawad, M. (2022). A new predictive control strategy for improving operating performance of a permanent magnet synchronous generator-based wind energy and superconducting magnetic energy storage hybrid system integrated with grid. Journal of Energy Storage, 55, 105515.
Nasiri, M., Mobayen, S., & Arzani, A. (2021). PID-type terminal sliding mode control for permanent magnet synchronous generator-based enhanced wind energy conversion systems. CSEE Journal of Power and Energy Systems, 8(4), 993-1003.
Nguyen, H. T., Al-Sumaiti, A. S., Vu, V. P., Al-Durra, A., & Do, T. D. (2020). Optimal power tracking of PMSG based wind energy conversion systems by constrained direct control with fast convergence rates. International Journal of Electrical Power & Energy Systems, 118, 105807.
Oree, V., Hassen, S. Z. S., & Fleming, P. J. (2017). Generation expansion planning optimisation with renewable energy integration: A review. Renewable and Sustainable Energy Reviews, 69, 790-803.
Podmiljsak, B., Saje, B., Jenus, P., Tomse, T., Kobe, S., Zuzek, K., & Sturm, S. (2024). The Future of Permanent-Magnet-Based Electric Motors: How Will Rare Earths Affect Electrification?. Materials, 17(4), 848.
Rachedi, M. O., Saidi, M. L., & Arbaoui, F. (2020). MPPT control design for variable speed wind turbine. International Journal of Electrical and Computer Engineering (IJECE), 10(5), 4604-4614.
Raouf, A., Tawfiq, K. B., Eldin, E. T., Youssef, H., & El-Kholy, E. E. (2023). Wind energy conversion systems based on a synchronous generator: comparative review of control methods and performance. Energies, 16(5), 2147.
Roy, A., & Bandyopadhyay, S. (2019). Wind Power Based Isolated Energy Systems. Cham: Springer International Publishing.
Stiti, C., Benrabah, M., Aouaichia, A., Oubelaid, A., Bajaj, M., Tuka, M. B., & Kara, K. (2024). Lyapunov-based neural network model predictive control using metaheuristic optimization approach. Scientific Reports, 14(1), 18760.
Tang, Y., Li, J., Li, S., Cao, Q., & Wu, Y. (2019). Non-linear extended state observer-based sliding mode control for a direct-driven wind energy conversion system with permanent magnet synchronous generator. The Journal of Engineering, 2019(15), 613-617.
Tola, O. J., Umoh, E. A., Enesi, Y. A., & Osinowo, O. E. (2022). Permanent magnet synchronous generator connected to a grid via a high speed sliding mode control.
Ullah, A., Khan, L., & Khan, Q. (2020, January). Variable Gain Real-twisting Sliding Mode M PPT Control for Permanent Magnet Synchronous Generator based Wind Energy Conversion System. In 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) (pp. 1-7). IEEE.
Valenciaga, F., & Fernandez, R. D. (2015). Multiple-input-multiple-output high-order sliding mode control for a permanent magnet synchronous generator wind-based system with grid support capabilities. IET Renewable Power Generation, 9(8), 925-934
Valenciaga, F., & Puleston, P. F. (2008). High-order sliding control for a wind energy conversion system based on a permanent magnet synchronous generator. IEEE transactions on energy conversion, 23(3), 860-867.
Wanjekeche, T., Ndapuka, A. A., & Mukena, L. N. (2023). Strategic Sizing and Placement of Distributed Generation in Radial Distributed Networks Using Multiobjective PSO. Journal of Energy, 2023(1), 6678491.
Wei, C., Xu, J., Chen, Q., Song, C., & Qiao, W. (2022). Full-order sliding-mode current control of permanent magnet synchronous generator with disturbance rejection. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 4(1), 128-136.
Wu, L., Liu, J., Vazquez, S., & Mazumder, S. K. (2021). Sliding mode control in power converters and drives: A review. IEEE/CAA Journal of Automatica Sinica, 9(3), 392-406.
YACHIR, A., BOULOUIHA, H. M., BELABBES, A., KHODJA, M., & BOUDDOU, R. (2024). Control Of a Grid-Connected PMSG-Based Wind Energy System with A Back-To-Back Converter Using a Hybrid Fuzzy Sliding Mode Control. Przeglad Elektrotechniczny, 2024(9).
Yan, J., Lin, H., Feng, Y., Guo, X., Huang, Y., & Zhu, Z. Q. (2013). Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system. IET Renewable Power Generation, 7(1), 28-35.
Zhang, C., & Plestan, F. (2021). Adaptive sliding mode control of floating offshore wind turbine equipped by permanent magnet synchronous generator. Wind Energy, 24(7), 754-769.
Zhang, J., Cui, M., & He, Y. (2020). Parameters identification of equivalent model of permanent magnet synchronous generator (PMSG) wind farm based on analysis of trajectory sensitivity. Energies, 13(18), 4607.
Zhuo, G., Hostettler, J. D., Gu, P., & Wang, X. (2016). Robust sliding mode control of permanent magnet synchronous generator-based wind energy conversion systems. Sustainability, 8(12), 1265.