Numerical approach for performance study of hybrid PV/Thermal collector
Main Article Content
Abstract
According to their thermophysical properties, the solar collectors using the working fluid (air, water) show considerably poor efficiency. In this paper, we study the combination of the collector with a photovoltaic module as an efficient method for improving the system performance, particularly the electrical and thermal performance. The mathematical model presented here is based on the energy transfer phenomenon within the various components of the collector. Thus, the transfer equations discretization is carried out using the finite difference method. Our results clearly show the direct impact of various parameters, in particular the inclination angle of the collector and the flow mass rate, on the overall efficiency of the collector. The proposed approach achieves a significant efficiency.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.