Triple junction solar cell with Cu In1-x Gex Se as absorbents layers

Main Article Content

Amina Maria Laoufi
Latifa Mousli
Benmoussa Dennai

Abstract

The design of multi-junction solar cells is guided by both the theoretical optimum bandgap combinations as well as the realistic limitations to materials with these bandgaps. Nowadays, triple-junction III-V multi-junction solar cells are commonly used as GaAs, InGaAs; InGaP ... In this work, we are interested in studying triple junctions based on thin-film solar cells Cu(In1-xGax) Se2, CuInSe2, and CuGaSe2 quaternaries using Silvaco ATLAS software. Incorporating Cu(In0.34Ga0.66) Se2 as an absorber in the middle sub-cell increased the open-circuit voltage by 0.72 V. The highest cell efficiency is 20.89 % (Voc = 2.33 V, Jsc = 9.97 mA/cm2, FF = 89.62%). This triple-junction solar cell demonstrates the potential and limitations of future improvements when voltage and current are considered.

Article Details

How to Cite
[1]
A. M. Laoufi, L. . Mousli, and B. . Dennai, “Triple junction solar cell with Cu In1-x Gex Se as absorbents layers”, J. Ren. Energies, vol. 1, no. 1, pp. 93 -, Sep. 2023.
Section
special

References

Yamaguchi, M., Takamoto, T., Araki. K. & Ekins- Daukes, N. (2003). III–V compound multi-junction solar cells: present and future. Solar Energy Materials and Solar Cells. 75(1), 261-269.

Guo, Y.Liang, Q. Shu Bifen. W, Jing.Yang, Q.The III–V triple-junction solar cell characteristics and optimization with a fresnel lens concentrator.International Journal of Photoenergy. Hindawi Volume 2018, Article ID 7285849, https://doi.org/10.1155/2018/7285849.

Xiao, K.Wen, J. Han, Q.Lin, R. Gao, Y.Gu, S. Zang, Y. Nie, Y.Zhu, J. Xu, J. Tan, H.Solution-Pprocessed monolithic all-perovskite triple-junction solar cells with efficiency exceeding 20.ACS Energy Letters,vol 5(2020), No. 2819- 2826 doi 10.1021/acsenergylett.0c01184.

Bett, A.W., Dimroth, F., Guter, W., Hoheisel, R., Oliva, E., Philipps, S.P., Schone, J., Siefer, G., Steiner, M., Wekkeli, A., Welser, E., Meusel, M., Kostler, W. & Strobl, G. (2009). Highest Efficiency Multi-Junction Solar Cell for Terrestrial and Space Applications. 24th European Photovoltaic Solar Energy Conference and Exhibition (PVSEC), Hamburg, Germany, pp1-6.

Baur, C., Khorenko, V., Siefer, G., Bourgoin, J.C., Casale, M., Campesato, R., Duzellier, V. & Inguimbert, V. (2013). Development Status of Triple-junction Solar Cells Optimized for Low Intensity Low Temperature Applications. 39th IEEE Photovoltaic Specialists Conferences (PVSC), TAMPA, United States, pp3237-3242.

a. Bounouh, G. Almuneau, H. Baumgartner, A. Cuenat, N. Gambacorti, J. Hoffmann, R. Kern, F. Kienberger, J. Krupka, D. Lackner, B. Pollakowski, T. G. Rodriguez, F. Sametoglu, L. Usydus, S. Winter, and F. Witt, 2014, The EMRP project Metrology for III-V materials based high efficiency multi-junction solar cells, CPEM 2014, IEEE Xplore, 318 – 319, DOI: 10.1109/CPEM.2014.6898387.

Aho, A.Isoaho, R. Raappana, M. Aho, T.Anttola, E. Lyytiainen, J.Hietalahti, A. Polojarvi, V. Tukiainen, A. Reuna, J. Peltomaa, L.Guina, M.Wide spectral coverage (0.7–2.2 eV) lattice-matched multijunction solar cells based on AlGaInP, AlGaAs and GaInNAsSb materials.Progress in Photovoltaics: Research and Applications.vol.29.NO.7.doi,https://doi.org/10.1002/pip.3412.

J. Ivari, "A Paradigmatic Analysis of Contemporary Schools of IS Development", European Journal of Information Systems, Vol. 1, No. 4, 1991, pp. 249-272.

T. Takamoto T. ,T. Agui , A. Yoshida, K. Nakaido , H. Juso, K. Sasaki , K. Nakamora, H. Yamaguchi,T. Kodama, H. Washio.

M. Imaizumi .World's highest efficiency triple-junction solar cells fabricated by inverted layers transfer process. 2010 35th IEEE Photovoltaic Specialists Conference, 2010, pp. 000412-000417, doi: 10.1109/PVSC.2010.5616778.

Dimroth, F., Guter, W., Schone, J., Welser, E., Steiner, M., Oliva, E., Wekkeli, A., Siefer, G., Philipps, S.P., & Bett, A.W. (2009). Metamorphic GaInP/GaInAs/Ge triple-junction solar cells with 41 % efficiency. 2009 34th IEEE Photovoltaic Specialists Conference (PVSC), 001038-001042.

Muller, R. Lackner, D.Hohn, O.Hauser, H. Blasi, B. Predan, F. Benick, J. Hermle, M. Glunz, S W. Dimroth, F.Two-terminal III– V//Si triple-junction solar cell with power conversion efficiency of 35.9 % at AM1.5.(2022). Progress in Photovoltaics: Research and Application.Vol.30.No .869-879.

Mufti, N., Amrillah, T., Taufiq, A., Sunaryono, Aripriharta, Diantoro, M., Zulhadjri, & Nur, H. (2020). Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy, 207(April), 1146–1157. https://doi.org/10.1016/j.solener.2020.07.065.

Wei, Su Huai, S. B. Zhang, and Alex Zunger. 1998. “Effects of Ga Addition to CuInSe2 on Its Electronic, Structural, and Defect Properties.” Applied Physics Letters 72(24): 3199–3201.

Jackson, P., Hariskos, D., Wuerz, R., Kiowski, O., Bauer, A., Friedlmeier, T. M., & Powalla, M. (2015). Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. Physica Status Solidi - Rapid Research Letters, 9(1), 28–31. https://doi.org/10.1002/pssr.201409520.

Wang, Y. C., & Shieh, H. P. D. (2014). Double-graded bandgap in Cu(In,Ga)Se2 thin film solar cells by low toxicity selenization process. Applied Physics Letters, 105(7), 0–4. https://doi.org/10.1063/1.4893713.

Yamaguchi, Masafumi, Frank Dimroth, John F. Geisz, and Nicholas J. Ekins-Daukes. 2021. “Multi-Junction Solar Cells Paving the Way for Super High-Efficiency.” Journal of Applied Physics 129(24).

Kadi, O., B. Dennai, and A. Laoufi. 2021. “Numerical Simulation of the Effect of Varied Buffer Layers on the Performance of Cu(In, Ga)Se2 Solar Cells Using Silvaco Tcad 2D.” Journal of Ovonic Research 17(3): 247–51.

Laoufi, A M., B. Dennai, Kadi, O. 2021. “Numerical Modeling of Multi-Junction Solar Cell-Based CIGS with Two Sub-Cells in Parallel Using Silvaco TCAD.” 18(6): 297–301.

Boukortt, N. E. I., Patanè, S. & Abdulraheem, Y. M. Numerical investigation of CIGS thin-film solar cells. Sol. Energy 204, 440– 447 (2020).

H. Amar and S. Tobbeche, “Study of electrical characteristics of CdS/CIGS (cadmium-sulfide/copper-indium-gallium-selenium) heterojunction solar cell,” no. May, pp. 4–5, 2015.

F. Oliva, “Modelling, characterization and optimization of heat treatment processes for the formation of CIGS absorbers To cite this version: HAL Id: tel-01502706 ” 2017

Most read articles by the same author(s)