Artificial neural network-based modeling for the prediction of heat and mass transfer coefficient of the adiabatic liquid desiccant system

Main Article Content

Fatih Bouzeffour

Abstract

This work, based on the data obtained from the literature reported by (Varela et al., 2018), aims to use the artificial neural network approach to predict the heat and mass transfer in a dehumidifier system, using lithium chloride as a liquid desiccant. A neural network model was developed in MATLAB environment based on multilayer perceptron that included an input, hidden, and output layer. The network input parameters are air velocity, air temperature, air humidity ratio, liquid desiccant temperature, liquid flow rate, and liquid desiccant concentration. The network output includes two variables which are the heat transfer coefficient (Kh) and mass transfer coefficient (Km). The performance of the ANN model was evaluated using the statistical parameters between the prediction results and experimental values. The performance regression yields R2 and MSE values of 0.9344 and 9.0032, respectively, for the test data set of heat transfer coefficient (Kh). Moreover, for the mass transfer coefficient (Km), the regression parameter R2 and MSE values for the ANN tests were found to be 0.9657 and 2.0414, respectively. In addition, air velocity, air temperature, solution mass flow rate, and solution concentration are the most influential parameters on the heat and mass transfer between the air and liquid desiccant.

Article Details

How to Cite
[1]
. F. Bouzeffour, “Artificial neural network-based modeling for the prediction of heat and mass transfer coefficient of the adiabatic liquid desiccant system”, J. Ren. Energies, vol. 25, no. 2, pp. 157 -, Dec. 2022.
Section
Articles

References

Bouzeffour, F., Khelidj, B., Yahi, F., Belkacemi, D., & Taane, W. (2021). Performance prediction of a liquid desiccant dehumidifier using artificial neural networks approach. Science and Technology for the Built Environment, 27(2), 211-225. DOI: 10.1080/23744731.2020.1818504

Elsayed, M. M., Gari, H. N., & Radhwan, A. M. (1993). Effectiveness of heat and mass transfer in packed beds of liquid desiccant system. Renewable Energy, 3(6), 661-668. DOI: https://doi.org/10.1016/0960-1481(93)90073-P

Fumo, N., & Goswami, D. Y. (2002). Study of an aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration. Solar Energy, 72(4), 351-361. doi: https://doi.org/10.1016/S0038-092X(02)00013-0

Kalogirou, S. A. (2000). Applications of artificial neural-networks for energy systems. Applied Energy, 67(1), 17-35. DOI: https://doi.org/10.1016/S0306-2619(00)00005-2

Kumar, R., & Asati, A. K. (2016). Experimental study on performance of celdek packed liquid desiccant dehumidifier. Heat and Mass Transfer, 52(9), 1821-1832. DOI: 10.1007/s00231-015-1704-2

Mellit, A., & Kalogirou, S. A. (2008). Artificial intelligence techniques for photovoltaic applications: A review. Progress in Energy and Combustion Science, 34(5), 574-632. DOI: https://doi.org/10.1016/j.pecs.2008.01.001

Onda, K., Takeuchi, H., & Okumoto, Y. (1968). MASS TRANSFER COEFFICIENTS BETWEEN GAS AND LIQUID PHASES IN PACKED COLUMNS. Journal of Chemical Engineering of Japan, 1(1), 56-62. doi: 10.1252/jcej.1.56

Patnaik, S., Lenz, T. G., & Löf, G. O. G. (1990). Performance studies for an experimental solar open-cycle liquid desiccant air dehumidification system. Solar Energy, 44(3), 123-135. doi: https://doi.org/10.1016/0038-092X(90)90074-M

Salarian, H., Fatahian, E., & Fatahian, H. (2020). A Technical Review Of Desiccant Air Conditioning Systems. European J. Eng. App. Sci., 3(1), 5-12.

Su, W., Li, W., Sun, B., & Zhang, X. (2019). Experimental study and correlations for heat and mass transfer coefficients in the dehumidifier of a frost-free heat pump system. International Journal of Heat and Mass Transfer, 131, 450-462. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.078

Varela, R. J., Yamaguchi, S., Giannetti, N., Saito, K., Harada, M., & Miyauchi, H. (2018). General correlations for the heat and mass transfer coefficients in an air-solution contactor of a liquid desiccant system and an experimental case application. International Journal of Heat and Mass Transfer, 120, 851-860. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.089

Wang, W.-J., Zhao, L.-X., & Zhang, C.-L. (2006). Generalized neural network correlation for flow boiling heat transfer of R22 and its alternative refrigerants inside horizontal smooth tubes. International Journal of Heat and Mass Transfer, 49(15), 2458-2465. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.021

Yin, Y., & Zhang, X. (2008). A new method for determining coupled heat and mass transfer coefficients between air and liquid desiccant. International Journal of Heat and Mass Transfer, 51(13), 3287-3297. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.040

Zendehboudi, A., Tatar, A., & Li, X. (2017). A comparative study and prediction of the liquid desiccant dehumidifiers using intelligent models. Renewable Energy, 114, 1023-1035. DOI: https://doi.org/10.1016/j.renene.2017.07.078

Zhang, L., Hihara, E., Matsuoka, F., & Dang, C. (2010). Experimental analysis of mass transfer in adiabatic structured packing dehumidifier/regenerator with liquid desiccant. International Journal of Heat and Mass Transfer, 53(13), 2856-2863. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.012