Experimental Study on Enhancing Lead Oxide Photoelectrochemical Efficiency with Tin Substrate Modifications for Renewable Energy Systems

Main Article Content

Tawfiq Dilmi
Achour Dakhouche
H’mida Latelli
Ahmed Saoudi

Abstract

This work focuses on the photoelectrochemical and semicondictrise study of the corrosion layer formed in the dark on Lead and lead-tin alloys in a 0.5M sulfuric acid solution: Electrochemical Impedance Spectroscopy (EIS), Linear Sweeping Voltage (LSV), Mott-Schottky plots and photocurrent measurements. The composition was determined respectively by XRD diffraction and SEM electron microscopy. The findings indicate that the incorporation of tin leads to a reduction in the corrosion layer thickness while significantly enhancing its electrical conductivity. This effect is attributed to the formation of conductive, non-photoactive tin oxides and the development of a compact interfacial the layer separating the grid from the positive active material.

Article Details

Section

Articles

How to Cite

[1]
“Experimental Study on Enhancing Lead Oxide Photoelectrochemical Efficiency with Tin Substrate Modifications for Renewable Energy Systems”, J. Ren. Energies, vol. 27, no. 2, pp. 137 – 150, Dec. 2024, doi: 10.54966/jreen.v27i2.1155.

References

Barradas, R.G., Nadezhdin, D.S., Webb, J.B., Roth, A.P., Williams D.F. (1981). Some photoelectrochemical observations on lead under anodic oxidation in sulphuric acid. J. Electroanal. Chem., 126(1-3), 273-276. https://doi.org/10.1016/S0022-0728(81)80434-2

Buchanan, J. S., & Peter, L. M. (1988). Photocurrent spectroscopy of the lead electrode in sulphuric acid. Electrochimica Acta, 33(1), 127-136. https://doi.org/10.1016/0013-4686(88)80044-6

Bullock, K. R., Trischan, G. M., & Burrow, R. G. (1983). Photoelectrochernical and Microprobe Laser Raman Studies of Lead Corrosion in Sulfuric Acid. J. EIectrochem. Soc.: Electrochenical Science and Technology, 130(6), 1283-1289. https://doi.org/https://doi.org/10.1149/1.2119939

Campbell, S. A., & Peter, L. M. (1991). A photoelectrochemical study of the reduction of electrodeposited a-PbO2in ethanoate solution. Journal of Electroanalytical Chemistry. https://doi.org/10.1016/0022-0728(91)87014-U

Carter, B.J., Stefano, S.D., Whitcanack, L. (1986). Ext. Abstr. The Electrochemical Society, Pennington, NJ, USA. Ext. Abst. No. 94, Vol. 86-2, 133.

Cimek, J., Stepien, R., Klimczak, M., Zalewska, I., Buczynski R. (2017). Development of thermally stable glass from SiO2-Bi2O3-PbO-ZnO-BaO oxide system suitable for all-solid photonic crystal fibers. Optical Materials, 73, 277-283. https://doi.org/10.1016/J.OPTMAT.2017.08.028

El-Mallawany, R., Sayyed, M. I., Dong, M. G., & Rammah, Y. S. (2018). Simulation of radiation shielding properties of glasses contain PbO. Radiation Physics and Chemistry, 151, 239-252. https://doi.org/10.1016/J.RADPHYSCHEM.2018.06.035

Feiner, A.S., McEvoy, A.J., Infelta, P.P. (1987). Crystal-face specific electrochemical effects on cadmium sulphide. Science, Surface, 189, 411-419. https://doi.org/10.1016/S0039-6028(87)80461-2

Foroughi, M.M. and Ranjbar, M. (2017). Graphene Oxide Doped with PbO Nanoparticles, Synthesis by Microwave Assistant Thermal Decomposition and Investigation of Optical Property. Journal of Cluster Science, 28, 2847-2856. https://doi.org/10.1007/s10876-017-1248-3

Guyomard, D. (1986). Mise au Principes de base de l’électrochimie des semi-conducteurs. J. Chim. Phys.,83, 355-391. https://doi.org/https://doi.org/10.1051/jcp/1986830355

Liu, W., Ma, B., Fu, Y., Zhang, K., Mezaal, M. A., Li, F., Zhao, X., & Lei, L. (2017). Electrochemical property of a-PbO prepared from the spent negative powders of lead acid batteries. Journal of Solid State Electrochemistry. https://doi.org/10.1007/s10008-016-3333-1

Mohamed E & al. (2018). Recycled high-density polyethylene plastics added with lead oxide nanoparticles as sustainable radiation shielding materials. Journal of Cleaner Production, 176, 276-287. https://doi.org/10.1016/j.jclepro.2017.12.100

Nelson, R. F., & Wisdom, D. M. (1991). Pure lead and the tin effect in deep-cycling lead/acid battery applications. Journal of Power Sources, 33(1-4), 165-185. https://doi.org/10.1016/0378-7753(91)85058-5

Patel, D. B. and Mukhopadhyay, I. (2015). Schottky junction solar cells based on nonstoichiometric PbOx film. Journal of Physics D: Applied Physics, 48, 025102. https://doi.org/10.1088/0022-3727/48/2/025102

Pavlov, D. (1978). Processes in solid state at anodic oxidation of a lead electrode in H2SO4solution and their dependence on the oxide structure and properties. Electrochimica Acta, 23, 845-854. https://doi.org/10.1016/0013-4686(78)87005-4

Pavlov, D. (1981). Semiconductor mechanism of the processes during electrochemical oxidation of PbO to PbO2. Journal of Electroanalytical Chemistry, 118, 167–185. https://doi.org/10.1016/S0022-0728(81)80539-6

Pavlov, D., Bashtavelova, E., Iliev, V. (1984). Structure of the lead-acid battery active masses. In Proceedings of the Symposium on Advances in Lead-Acid Batteries. Proceedings of the Symposium on Advances in Lead-Acid Batteries, 16.

Pavlov, D., Poulieff, C.N., Klaja, E. and Iordanov, N. (1969). Dependence of the Composition of the Anodic Layer on the Oxidation Potential of Lead in Sulfuric Acid. Journal of The Electrochemical Society, 116(3), 316–319. https://doi.org/https://doi.org/10.1149/1.2411836

Pavlov, D., Zanova, S. and Papazov, G. (1977). Photoelectrochemical Properties of the Lead Electrode during Anodic Oxidation in Sulfuric Acid Solution. J. Electrochem. See: Electrochemical Science and Technology, 124(10), 1522–1528. https://doi.org/10.1149/1.2133105

Pendry, C. (1999). how-compressible-is-recombinant-battery-separator-mat. Journal of Power Sources, 78(1–2), 54–64. https://doi.org/https://doi.org/10.1016/S0378-7753(99)00011-7

Peter, L. M. (1983). A photoelectrochemical study of the reduction of alpha lead dioxide in aqueous sodium tetraborate. J. Electroanal. Chem, 144, 315–330. https://doi.org/https://doi.org/10.1016/S0022-0728(83)80164-8

Rocca, E., & Steinmetz, J. (1999). Mechanism of passivation of Pb(Ca)-Sn alloys in sulfuric acid: Role of tin. J Electrochimica Acta, 44, 4611–4618. https://doi.org/10.1016/S0013-4686(99)00186-3

Sato, N. (1998). Electrochemistry at Metal and Semiconductor Electrodes. Elsevier. https://doi.org/10.1016/B978-0-444-82806-4.X5000-4

Schefold, J. (1992). Flatband Potentials, Barrier Heights, and Charge Transfer at the n-lnP/Electrolyte Contact. Journal of The Electrochemical Society, 139, 2862–2871. https://doi.org/10.1149/1.2068993

Semeniuk, O., Grynko, O., Juska, G. et al. (2017). Amorphous lead oxide (a-PbO): suppression of signal lag via engineering of the layer structure. Scientific Reports, 7(1), 1–7. https://doi.org/10.1038/s41598-017-13697-2

Shao-you, L., Yuan-dao, C., Tao-yu, Q. et al. (2018). Sulfur Doped Lead Monoxide Superfine Powder Materials: Solid-State Synthesis, Characterization, Adsorption and Photocatalytic Property of Methylene Blue. Journal of Inorganic and Organometallic Polymers and Materials, 28, 2584–2595. https://doi.org/10.1007/s10904-018-0942-4

Srivastava, J. K., Pandey, P., Mishra, V. N., & Dwivedi, R. (2011). Structural and micro structural studies of PbO-doped SnO2 sensor for detection of methanol, propanol and acetone. In Journal of Natural Gas Chemistry, 20(2), 179–183. https://doi.org/10.1016/S1003-9953(10)60168-5

Weininger, J. L., & Siwek, E. G. (1976). Corrosion of Lead Alloys at High Anodic Potentials. Journal of The Electrochemical Society, 123(5), 602–606. https://doi.org/10.1149/1.2132893

Zentai, G., Partain, L.D., Pavlyuchkova, R. et al. (2013). Mercuric Iodide and Lead Iodide X-Ray Detectors for Radiographic and Fluoroscopic Medical Imaging. Proc. SPIE 5030, Medical Imaging 2003: Physics of Medical Imaging, 77–91. https://doi.org/10.1117/12.480227

Zheng, C., Li, W., Chen, W., Ye, X., Cai, S. and Xiao, X. (2014). Microstructure and optical limiting properties of multicomponent inorganic gel-glasses: A focus on SiO2, TiO2 and PbO gel-glasses. Ceramics International, 40(2), 2669–2675. https://doi.org/10.1016/j.ceramint.2013.10.057

Zhuravlev, Y. N., & Korabel’nikov, D. V. (2017). A First Principles Study of the Mechanical, Electronic, and Vibrational Properties of Lead Oxide. Original Russian Text © Yu.N. Zhuravlev, 59(11), 2272–2286. https://doi.org/10.1134/S106378341711035X

Similar Articles

You may also start an advanced similarity search for this article.