Applying the Generalized Pareto Principle to Predict Peak Temperatures in Northeast Algeria
Main Article Content
Abstract
This study employs the Generalized Pareto Distribution (GPD) to model high temperature events at the Batna station, strategically applying varying thresholds to enhance accuracy and mitigate tail distribution bias. This was done by analyzing historical rainfall data from 1981 to 202. Using maximum likelihood estimation and an innovative approach to fitting multi-threshold GPDs, stable thresholds were established, particularly identifying the Pareto II type as the most suitable model for temperatures exceeding 25°C. Analysis revealed a consistent average temperature of 27.52°C, with a negative skewness indicating a bias toward lower values within extreme temperatures. The study also predicts return levels for different periods, providing critical temperature thresholds expected to be exceeded every 2, 20, 50, and 100 years. These findings contribute to understanding extreme temperature dynamics in the region, supporting urban planning, infrastructure design, and climate resilience strategies.
Article Details
Section

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
How to Cite
References
Balkema, A. A., & de Haan, L. (1974). Residual life time at great age. The Annals of Probability, 2(5), 792–804.
Beniston, M., Stoffel, M., & Guillet, S. (2018). Climate change and its impacts on glaciers and snow cover. Cambridge University Press.
Bronaugh, D., & Werner, A. (2013). zyp: Zhang + Yue-Pilon trends package [Software]. R Project for Statistical Computing. https://www.r-project.org/
Caminade, C., Kovats, S., Rocklov, J., Tompkins, A. M., Morse, A. P., Colón-González, F. J., Stenlund, H., Martens, P., & Lloyd, S. J. (2014). Impact of climate change on global malaria distribution. Proceedings of the National Academy of Sciences, 111(9), 3286-3291. https://doi.org/10.1073/pnas.1302089111
Castro-Camilo, D., Huser, R., & Rue, H. (2021). Practical strategies for GEV-based regression models for extremes [arXiv preprint arXiv:2106.13110].
Cheraitia, H. (2021). Modélisation de la température mensuelle maximale 1988 à 2018. Revue d’Économie et de Statistique Appliquée, 18(1), 45-55. https://www.asjp.cerist.dz/en/article/156834
Davison, A. C., & Smith, R. L. (2015). Models for exceedances over high thresholds. Journal of the Royal Statistical Society, Series B, 393–442.
Desvina, A. P., Safitri, E., & Rahma, A. N. (2019). Statistical modelling of extreme data of air pollution in Pekanbaru City. InPrime: Indonesian Journal of Pure and Applied Mathematics, 1(1), 48–56.
Frid A, Zamboni L. On automatic infinite permutations. RAIRO - Theoretical Informatics and Applications. 2012;46(1):77-85. doi:10.1051/ita/2011129
Gilleland, E., & Katz, R. W. (2011). New software to analyze how extremes change over time. Transactions of the American Geophysical Union, 92(2), 13–14.
Gilleland, E., & Katz, R. W. (2016). extRemes 2.0: An Extreme Value Analysis Package in R. Journal of Statistical Software, 72(8), 1–39
Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d’une série aléatoire. Annals of Mathematics, 44, 423–453
Habibi, B., Meddi, M., & Boucefiane, A. (2013). Analyse fréquentielle des pluies journalières maximales Cas du Bassin Chott-Chergui. Nature & Technology, (8), 41B.
IPCC (2021). Sixth Assessment Report of Working Group I: The Scientific Basis of Climate Change. United Nations, Geneva, Switzerland.
Khan, M., Hussain, Z., & Ahmad, I. (2021). Effects of L-moments, maximum likelihood and maximum product of spacing estimation methods in using Pearson type-3 distribution for modeling extreme values. Water Resources Management, 35(5), 1415–1431. https://doi.org/10.1007/s11269-021-02767-w
Kotz, S., & Nadarajah, S. (2000). Extreme Value Distributions: Theory and Applications. Imperial College Press.
Makarov, M. A. (2006). On permutations generated by infinite binary words. Sibirskie Èlektronnye Matematicheskie Izvestiya, 3, 304-311.
Medjerab, A. (2007). Les situations pluviométriques extrêmes dans le nord-ouest de l'Algérie. In: Climat, tourisme, environnement, Actes du XXème colloque de l'Association Internationale de Climatologie (Carthage, Tunisie), H. Ben Boubaker (Ed.), p. 381-386.
Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 3, 119–131.
R Core Team. (2015). R: A Language and Environment for Statistical Computing. R Foundation, for Statistical Computing, Vienna, Austria. http://www.R-project.org/
Stephenson, A. G. (2002). evd: Extreme value distributions. R News. Retrieved from http://CRAN.R-project.org/doc/Rnews/, pp. 641–644.
United Nations Environment Programme. (2023). Climate Change Impacts and Adaptation in the Mediterranean Region. Nairobi: UNEP.
World Health Organization. (2020). Climate Change and Health: Implications for the Mediterranean Region. Geneva: WHO.
World Meteorological Organization. (2019). WMO Statement on the State of the Global Climate in 2018 (WMO-No. 1234). Geneva: WMO.