Evaluating the Performance of Parabolic Trough Solar Power Plants in Algerian Deserts: A Case Study of Andasol-1
Main Article Content
Abstract
Electricity generation through renewable energy sources is essential for addressing environmental and economic challenges caused by reliance on fossil fuels. The global energy sector is rapidly transitioning towards sustainable and renewable energy sources, with concentrated solar power (CSP) emerging as a promising technology, particularly parabolic trough solar power plants. This study examines the performance of the Andasol-1 Parabolic Trough Solar Power Plant, with a 50 MWe power output, in various locations of the Algerian desert, including Bechar, Djanet, and Tamanrasset regions. A detailed overview of the technical specifications of the Andasol-1 facility is presented, and a comprehensive economic and energy analysis is carried out using the System Advisor Model (SAM) software. Our findings indicate that the Djanet region emerged as the most favorable site for CSP deployment, with a capacity factor of 53.7% and a Levelized Cost of Electricity (LCOE) of 16.84 ¢/kWh, offering the best balance of energy yield and cost efficiency. These results contribute to the global transition to clean and economically advantageous energy sources and provide valuable insights into the viability and efficiency of CSP technologies in dry climates.
Article Details
Section

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
How to Cite
References
Abbas, M., Belgroun, Z., Aburidah, H., & Merzouk, N. (2013). Assessment of a Solar Parabolic Trough Power Plant for Electricity Generation under Mediterranean and Arid Climate Conditions in Algeria. Energy Procedia, 42, 93-102. doi:10.1016/j.egypro.2013.11.009
Azouzoute, A., Merrouni, A., & Touili, S. (2020). Overview of the integration of CSP as an alternative energy source in the MENA region. Energy Strategy Reviews, 29, 100493. doi:10.1016/j.esr.2020.100493
Boukelia, T., Mecibah, M., Kumar, B., & Reddy, K. (2015). Optimization selection and feasibility study of solar parabolic trough power plants for Algerian conditions. Energy Conversion and Management, 101, 450-459. doi:10.1016/j.enconman.2015.05.067
Dobos, A., Neises, T., & Wagner, M. (2014). Advances in CSP Simulation Technology in the System Advisor Model. Energy Procedia, 49, 2482-2489. doi:10.1016/j.egypro.2014.03.263
Ikhlef, k., & Larbi, S. (2018). Analyse technique de l'apport solaire de la centrale thermique hybride solaire-gaz de Hassi R'Mel (SPPI) . Journal of Renewable Energies, 21(1), 27-36. doi:10.54966/jreen.v21i1.666
Ikhlef, K., & Larbi, S. (2018). Etude technico-économique de la production d'électricité par voie de centrale solaire thermodynamique (Cylindro-parabolique). the International Conference on Advanced Mechanics and Renewable Energies, (pp. November 28-29). Boumerdes, Algeria.
Ikhlef, K., & Larbi, S. (2020). Techno-economic optimization for implantation of parabolic trough power plant: Case study of Algeria. Journal of Renewable and Sustainable Energy, 12(6), 063704 . doi:10.1063/5.0013699
Kariuki, S., Machinda, G., & Chowdhury, S. (2012). Solar multiple optimization and dispatch analysis of a potential parabolic CSP plant in Kenya. Transmission and Distribution Conference and Exposition (pp. 1-6). Orlando, FL, USA: IEEE. doi:10.1109/TDC.2012.6281594
Llorente García, I., Luis Álvarez, J., & Blanco, D. (2011). Performance model for parabolic trough solar thermal power plants with thermal storage: Comparison to operating plant data. Solar Energy, 85(10), 2443-2460. doi:10.1016/j.solener.2011.07.002
Montes, M., Abánades, A., & Martínez-Val, J. (2009a). Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple. Solar Energy, 83(5), 679-689. doi:10.1016/j.solener.2008.10.015
Montes, M., Abánades, A., & Martínez-Val, J. (2009b). Solar Multiple Optimization for a Solar-Only Thermal Power Plant, Using Oil as Heat Transfer Fluid in the Parabolic Trough Collectors. Solar Energy, 83(12), 2165-2176. doi:10.1016/j.solener.2009.08.010
Prieto, C., Blindu, A., Cabeza, L., Valverde, J., & García, G. (2024). Molten Salts Tanks Thermal Energy Storage: Aspects to Consider during Design. Energies, 17(1), 22. doi:10.3390/en17010022
Saleem, S., & Ul Asar, A. (2014). Analysis & Design of Parabolic Trough Solar Thermal Power Plant for Typical Sites of Pakistan. Journal of Electrical and Electronics Engineering, 9(3), 116-122. doi:10.9790/1676-0931116122
Solar Millennium AG. (2005). The parabolic trough power plant Andasol 1 to 3. Retrieved from http://large.stanford.edu/publications/power/references/docs/Andasol1-3engl.pdf