Influences of ternary ethanol methanol gasoline mixtures on the performance of a spark ignition engine
Main Article Content
Abstract
The principal aim of this study is to determine the influence of ternary mixtures of gasoline, ethanol and methanol as fuels, on a spark ignition engine performance. Four samples of fuels were prepared with varying concentrations of each constituent. The different fuels studied are: EM0 (gasoline), EM5 (2.5% ethanol, 2.5% methanol, 95% gasoline), EM10 (5% ethanol, 5% methanol, 90% gasoline) and EM15 (7.5% ethanol, 7.5% methanol, 85% gasoline). A battery of tests (appearance, color, odor, lower heating value, density, research octane number, vapor pressure, total sulfur content and distillation curve) was carried out on these mixtures in order to determine their physicochemical properties and their ability to be used as fuel. Then, the different prepared mixtures were used as fuels to determine the performance of the 4-stroke, carbureted Renault 4 engine. These tests show that these additions give rise to a fuel with a lower sulfur level, a higher RON and a lower low heating value compared to unleaded gasoline and therefore improve, depending on the circumstances, the power of the fuel engine, its specific consumption, its speed and combustion. At the end of this study, it was concluded that the use of fuel mixtures was relevant for high speeds and also more suitable for total loads.
Article Details
Section

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
How to Cite
References
Amine, M., & Barakat, Y. (2019). Properties of gasoline-ethanol-methanol ternary fuel blend compared with ethanol-gasoline and methanol-gasoline fuel blends. Egyptian Journal of Petroleum, 28(4), 371-376.
Bae, Choongsik, & Kim, J. (2017). Alternative Fuels for Internal Combustion Engines. Proceedings of the Combustion Institute 36, 3, 3389–3413.
Brennan, & Owende. (2010). Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and coproducts. Renewable & Sustainable Energy, 14, 557-5779.
Broust, F., gerard, P., & steene, L. V. (2008). Biocarburants de seconde génération. Techniques de l’Ingénieur.
Byer, F. (2018, Mars 4). futura-sciences. Consulté le décembre 28, 2022, sur https://www.futura-sciences.com/sciences/definitions/chimie-alcool-640/
Chen, Y., Kasseris, E., Heywood, J., Han, D., Kim, J., Lee, K., . . . Bunce, M. (2022). Benefits of Octane-On-Demand in an E10-Gasoline Engine Vehicle Using an On-Board Fuel Separator . SAE International.
Chi-When, L., Song-Bor, C., & San-Ju, L. (2005, July). Investigation of Mtbe and Aromatic Compound Concentration at a Gas Service Station. Environmental monitoring and assessment, 105, 327-39. doi:10.1007/s10661-005-4334-1
Colleen, E. R. (2010). Analysis of solvent dyes in refined petroleum products by electrospray ionization mass spectrometry. Fuel, 89(5), 997-1005. doi:https://doi.org/10.1016/j.fuel.2009.09.011
Cummins, L. (2000). Internal Fire . Carnot Press.
Dalena, F., Senatore, A., & Iulianelli, A. (2018). Advances in methanol production and utilization, with particular emphasis toward hydrogen generation via membrane reactor technology . Membranes (Basel), 6(4).
Deng, B., Fu, J., Zhang, D., Yang, J., Feng, R., Liu, J., . . . Liu, X. (2013, Octobre 1). The heat release analysis of bio-butanol/gasoline blends on a high speed SI (spark ignition) engine. Energy, 60, 230-241.
Elfasakhany, A. (2015, juillet). Investigations on the effects of ethanolemethanolegasoline blends in a spark-ignition engine: Performance and emissions analysis. Engineering Science and Technology, 18, 713-719.
Elfasakhany, A. (2018). Exhaust emissions and performance of ternary iso-butanolebio- methanolegasoline and n-butanolebio-ethanolegasoline fuel blends in spark-ignition engines: Assessment and comparison. Energy, 158, 830-844.
Gravalos, I., Moshou, D., Gialamas, T., Xyradakis, P., Kateris, D., & Tsiropoulos, Z. (2011). Performance and Emission Characteristics of Spark Ignition Engine Fuelled with Ethanol and Methanol Gasoline Blended Fuels. Alternative Fuel.
Habib, M. D., Nyumbandogo, E., Vincent, P., Muschart, X., & Keyanin. (2019). Intoxication au méthanol. Louvain Med, 138(4), 207-2012.
Hansen, A. C., Zhang, Q., & Lyne, P. W. (2005). Ethanol–diesel fuel blends. Bioresource Technology, 96(3), 277-285. doi:10.1016/j.biortech.2004.04.007
Hardenberg, H. (1992). Samuel Morey and His Atmospheric Engine (éd. SP 922). Society of Automotive Engineers.
Iram, A., Cekmecelioglu, D., & Demirci, A. (2022, December 3). Integrating 1G with 2G Bioethanol Production by Using Distillers' Dried Grains with Solubles (DDGS) as the Feedstock for Lignocellulotyc Enzyme Production. Fermenttion, 8(12). doi:10.3390/fermentation8120705
Jiena, Y., Chang, Z., Qian, W., Qioli, H., & Gang, Y. (2019). Catalytic conversions of atmospheric sulfur dioxide and formation of acid rain over mineral dusts: Molecular oxygen as the oxygen source. Chemosphere, 217, 18-25. doi:10.1016/j.chemosphere.2018.10.201
Kar, K., Last, T., Haywood, C., & Raine, R. (2008). Measurement of vapor pressures and enthalpies of vaporization and ethanol blends and their effects on mixture preparation in an SI engine. SAE Int J Fuel Lubricants, 1, 44-132.
Khayal, O. (2020). Sensors in Automobiles Internal Combustion Engines Sensors. Faculty of Engineering and Technology. Nile Valley University, Nile Valley.
Latika, B., Sonia, J., & Rumana, A. (2012). An economic and ecological perspective of ethanol production from renewable agro waste: a review. 2(1)(65).
Lee, R. A., & Lavoie, J.-M. (2013). From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity . Animal Frontiers, 3(2), 6-11.
Lennartsson, P. R., Erlandsson, P., & Mohammad, J. T. (2014). Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresource Technology, 165, 3-8.
Liang, F., Jin, F., Liu, H., & Wang, Y. (2009). The molecular function of the yeast polo-like kinase Cdc5 in Cdc14 release during early anaphase . Mol Biol Celly, 20(16), 557-5779.
Manzanera, M. (2011). Alternative Fuel. IntechOpen.
Martini, G., Manfredi, U., Mellios, G., Mahieu, V., Larse, B., Farfaletti, A., . . . (Barry) Cahill, G. (2007). Effects of gasoline vapour pressure and ethanol content on evaporative emissions from modern cars. Institute for Environment and Sustainability. Luxembourg: Office for Official Publications of the European Communities .
Mbuyi, K. H. (2018). Théorie sur les mélanges essence bioéthanol. Kinshasa. Inédit.
Muanda, M., Katshiatshia, H., & Diganga, H. (2019, 03). Etude des performances d'un moteur Renault 4 utilisant des mélanges essence-bio éthanol. 22, 37-48.
Najafi, G., Ghobadian, B., Tavakoli, T., Buttsworth, D., Yusaf, T., & Faizollahnejad, M. (2009). Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network. Applied Energy( 86), 630–639.
Nazzal, I. (2011, Avril). Experimental Study of Gasoline –Alcohol Blends on Performance of Internal Combustion Engine. European Journal of Scientific Research.
Nekoukar , Z., Zakaria, Z., Taghizadeh, F., Musavi, F., Sadat, E. B., Sharifpour, A., . . . Safanaei, S. (2021, June). Methanol poisoning as a new world challenge: A review. Annals of medecine and surgery, 66(102445). doi:10.1016/j.amsu.2021.102445
ÖZER, S., AKCAY, M., & VURAL, E. (2021, January). Effects of LPG use in a turbocharged stratified injection (TSI) engine using ethanol/gasoline as pilot fuel. Thermal Science, 24(1). doi:10.2298/TSCI200517010O
Pearson, R. J., Turner, J. W., Bell, A., Stefan , d., Woolard, C., & Davy, M. H. (2015). Iso-stoichiometric fuel blends:characterisation of physicochemical properties for mixtures of gasoline,ethanol, methanol and water. Automobile Engineering, 229, 111–139. doi:10.1177/0954407014529424
Petrou, C., E., & Pappis, C. P. (2009). Biofuels: A Survey on Pros and Cons. Energy and Fuels, 23(2), 1055–66.
Qayyum, M., Rosli, N., Jazair, W., Abdul, H., Putrasari, Y., & Azrul, M. (2021). Effects of Ethanol Blending with Methanol-Gasoline fuel on Spark Ignition Engine Performance and Emissions. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 83, 54-72.
Quirina I., R.-G., Doreen, K., & Bertau, M. (2019). Renewable Methanol Synthesis. ChemBioEng Reviews, 6, 209-236.
R. Paul, P., & Emilie, J. (2007). Introduction to Environmental Forensics (Second Edition) (éd. 2). (L. Brian, & D. Robert, Éds.) Burlington: Academic Press. doi:10.1016/B978-012369522-2/50011-7
Rachida, E. (2019). Encyclopedia of Environmental Health (Second Edition) (éd. 2). (N. Jerome, Éd.) Oxford: Elsevier. doi:10.1016/B978-0-12-409548-9.11509-X
Raif, Kenanoglu, Kaan, B. M., Baltacioglu, E., & Aydin, K. (2017). heoretical determination of optimum ethanol fuel blends rate within gasoline. Cappadocia, 51- 58.
Rasmussen, S. C. (2012). How Glass changed the World. The History and Chemistry of Glass from Antiquity to the 13th Century. Springer Heidelberg.
Roberta, Q., & Sierra, P. (2007). The energy–climate challenge: Recent trends in CO2 emissions from fuel combustion. Energy Policy, 35(11), 5938-5952.
Sharma, B., Larroche, C., & Dussap, C.-G. (2020). Comprehensive assessment of 2G bioethanol production . Bioresource Technology, 313.
Sileghem, L., Coppens, A., Casier, B., Vancoillie, J., & Verhelst, S. (2014). Performance and emissions of iso-stoichiometric ternary GEM blends on a production SI engine. Fuel, 117, 286–293.
Talia, A. M., Mohsen, M., Somayeh, F., & Johann, F. G. (2022). A new insight into integrated first and second-generation bioethanol production from sugarcane. Industrial Crops and Products, 188, 115675. doi:10.1016/j.indcrop.2022.115675
Tangka, J., Berinyuy, J., Tekounegnin, & Okale, A. (2011). Physico-chemical properties of bio-ethanol/gasoline blends and the qualitative effect of different blends on gasoline quality and engine performance. J Petrol Technol Altern Fuel, 2, 35-44.
Tim, L. Y., J, T. S., D, A. D., & Mariano, G. (1985, August 1). Mass spectral characterization of petroleum dyes, tracers, and additives. Analytical chemestry, 57(9), 1894–1902. doi:10.1021/ac00286a022
Turner, J. W., Pearson, R. J., Bell, A., & Woolard, C. (2012). Iso-Stoichiometric Ternary Blends of Gasoline, Ethanol and Methanol: Investigations into Exhaust Emissions, Blend Properties and Octane Numbers. SAE Int. J. Fuels Lubr., 5(3), 945-967. doi:10.4271/2012-01-1586
ul, I. H., Qaisar, K., Nawaz , A., Akram, F., Mukhtar, H., Zohu, X., . . . Shean, T. Y. (2021). Advances Vlorization of Lignocellulosic Biomass towards Energy Generation. Catalysts, 11(3). doi:10.3390/catal11030309
Verhelst, S., Turner, J. W., Sileghem, L., & Vancoillie, J. (2019). Methanol as a fuel for internal combustion engines. 70, 43-88 .
Wong, M., Wu, M., & Huo, H. (2007, May 22). Life-cycle energy and greenhous gas emission impacts of different corn ethanol plant types. Environnement Resarch Letters, 2(2). doi:10.1088/1748-9326/2/2/024001
Yaser, D., Kashif, S., Sarkar, B., Pallavi, R., & Banafsheh, M. (2019). Biomass, Biopolymer-Based Materials, and Bioenergy. (V. Deepak, F. Elena, J. Siddharth, & Z. Xiaolei, Éds.) Woodhead Publishing. doi:10.1016/B978-0-08-102426-3.00014-X
Yuqiang, L., Lei, M. K., Yilu, L., Chia-fon, F. L., & Shengming, L. (2016). Combustion, performance and emissions characteristics of a spark-ignition engine fueled with isopropanol-n-butanol-ethanol and gasoline blends. Fuel(184), 864-872.
Zaharin, M., Abdullah, N., Masjukib, H., Ali, O. M., Najafid, G., & Yusafe, T. (2018). Evaluation on physicochemical properties of iso-butanol additives in T ethanol-gasoline blend on performance and emission characteristics of a spark-ignition engine. Applied Thermal Engineering, 144, 960–971.