Liquid-sensible heat storage units for short-term low-temperature applications: configurations and thermal analysis
Main Article Content
Abstract
Two configurations of liquid-sensible heat storage systems are proposed for low-temperature solar applications. The first is an air-based system, where the storage element is water, while the charging and distributing heat transfer fluids are air. The second is a water-based system, where the storage element is thermal oil, while the heat transfer fluid is water. Regarding the second configuration, sunflower oil, and engine oil are tested for heat storage. The inlet temperatures of hot heat transfer fluids have been measured experimentally using air and water flat-plate solar collectors. Using the existing mathematical equations, the duration of a complete charge-discharge cycle for each storage element was calculated. The temperature variation of the storage element during the entire storage cycle was also examined. During the storage process, we noted that the temperature of the storage media increases with the rise of inlet temperature of the hot transfer fluid. It has been proven that water-based configuration using thermal oils is more efficient than air-based configuration. However, the discharge duration is longer for the air-based system than the water-based system. Moreover, we investigated and discussed the effect of both storage media volume (mass) and cooled transfer fluid’s flow rate on the storage material temperature during the whole charge-discharge cycle.
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
How to Cite
References
Abhat A, Aboul-Enein S, Malatidis NA. (1981). Heat-of-Fusion Storage Systems for Solar Heating Applications. In: Thermal Storage of Solar Energy, Den Ouden C, editor. TNO and Martinus Nijhoff Publishers, Netherlands, p. 157–171.
Abhat A. (1980) Short term thermal energy storage, Revue de Physique Appliquée 1980;15(3)477–501. doi:10.1051/rphysap:01980001503047700.
Agyenim F, Hewitt N, Emes P, Smyth M. (2010) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems. Renewable and Sustainable Energy Reviews 2010;14:615–28. doi:10.1016/j.rser.2009.10.015.
Alva G, Lin Y, Fang G. (2018) An overview of thermal energy storage systems. Energy 2018; 144:341-78. doi: 10.1016/j.energy.2017.12.037.
Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badrudin IA, Fayaz H. (2013) Non-edible vegetable oils; a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and Sustainable Energy Reviews 2013;18:211-45. doi:10.1016/j.rser.2012.10.013.
Badar MA, Zubair SM. (1995) On thermodynamics of a sensible heat, thermal energy storage system. ASME Journal of Solar Energy Engineering 1995;117:255-59. doi: 10.1115/1.2847830.
Barrasso M, Langella G, Amoresano A, Iodice P. (2023) Latest advances in thermal energy storage for solar plants. Processes 2023;11(6):1832. doi: 10.3390/pr11061832.
Bejan A. (1978) Two thermodynamic optima in the design of sensible heat units for energy storage. ASME Journal of Heat Transfer 1978;100:708–12. doi: 10.1115/1.3450882.
Bejan A., 2013. Convection Heat Transfer, fourth edition, John Wiley & sons, New Jersey.
Boukadoum AB, Bourabaa A, El Mokretar S, Semai H, Amari A. (2023) Numerical study of sensible thermal storage in solar collectors for air heating applications. In: 14th International Renewable Energy Congress, 16-18 December, Sousse, Tunisia (2023), IEEE. doi: 10.1109/IREC59750.2023.10389286.
Bouraba A, Boukadoum AB, Semai H, El Mokretar S, Amari A. (2025). Non-Edible Vegetable Oils and Non-Usable Synthetic Oils as Liquid-Sensible Heat Storage for Low-Temperature Solar Applications. . In: Technological and Innovative Progress in Renewable Energy Systems, Guerri O, Hadj Arab A, Imessad K, editors, Proceedings of the 2024 International Renewable Energy Days (IREN Days’2024), Algiers, Algeria, p. 235–239. doi: 10.1007/978-3-031-71926-4_41.
De Jong AG, Hoogendoorn CJ. (1981). Improvement of Heat Transfer in Parffines for Latent Heat Storage Systems. In: Thermal Storage of Solar Energy, Den Ouden C, editor. TNO and Martinus Nijhoff Publishers, Netherlands, p. 123–133.
Dincer I, Dost S, Li X. (1996) Thermal energy storage applications from and energy saving perspective. International Journal of Global Energy Issues 1996;9(4-6):351-64. doi: 10.1504/IJGEI.1997.063347.
Dincer I, Dost S, Li X. (1997) Performance analyses of sensible heat storage systems for thermal applications. International Journal of Energy Research 1997; 21:1157-71. doi:10.1002/(sici)1099-114x(19971010)21:12<1157::aid-er317>3.0.co;2-n.
Dincer I, Dost S. (1996) A perspective on thermal energy storage systems for solar energy applications. International Journal of Energy Research 1996;20:547–57. doi: 10.1002/(SICI)1099-114X(199606)20:6<547::AID-ER173>3.0.CO;2-S.
Dinçer I, Rosen MA. (2011). Thermal energy storage: systems and applications. 2nd ed. John Wiley and Sons, UK.
Dinçer I, Zamfirescu C. (2011). Sustainable energy systems and applications. Springer Science+Business Media. New York: USA.
Dittus FW, Boelter LMK. (1985) Heat transfer in automobile radiators of the tubular type. International Communications in Heat and Mass Transfer 1985;12:3-22. doi: 10.1016/0735-1933(85)90003-x.
Garg HP, Mullick SC, Bhargava AK. (1985). Solar thermal energy storage, Dordrecht, D. Reidel Publishing Company.
Gautam A, Saini RP. (2020) A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications. Solar Energy 2020;207:937-56. doi: 10.1016/j.solener.2020.07.027.
Hahne E, Fisch N, Giebe R. (1989). Experience with a Man-Made Aquifer in Short-Term and Long-Term Cycles. In: Energy Storage Systems, Kilkis B, Kakaç S, editors. Kluwer Academic Publishers, Netherlands, p. 509–523.
Hasnain SM. (1998a) Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques. Energy Conversion and Management 1998;39(11):1127–38. doi: 10.1016/S0196-8904(98)00025-9.
Hasnain SM. (1998b) Review on sustainable thermal energy storage technologies, Part II: cool thermal storage. Energy Conversion and Management 1998;39(11):1139–53. doi: 10.1016/S0196-8904(98)00024-7.
Hill JE, Kelly GE, Peavy BA. (1977) A method of testing for rating thermal storage devices based on thermal performance. Solar Energy 1977;19:721-32. doi: 10.1016/0038-092X(77)90035-4.
Incropera FP, Dewitt DP, Bergman TL, Lavine AS, (2007). Fundamentals of heat and mass transfer. 6th ed. John Wiley and Sons, UK.
IRENA. (2020). Innovation outlook: thermal energy storage. International Renewable Energy Agency, Abu Dhabi. ISBN 978-92-9260-279-6. www.irena.org/publications.
Kalaiarasi G, Velraj R, Swami MV. (2016) Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage. Energy 2016;111:609-19. doi: 10.1016/j.energy.2016.05.110.
Kalaiarasi G, Velraj R, Vanjeswaran MN, Pandian NG. (2020) Experimental analysis and comparison of flat plate solar air heater with and without integrated sensible heat storage. Renewable Energy 2020;150:255-65. doi: 10.1016/j.renene.2019.12.116.
Kalogirou SA. (1997) Design, construction, performance evaluation and economic analysis of an integrated collector storage system. Renewable Energy 1997;12:179-92. doi: 10.1016/S0960-1481(97)00029-3.
Kalogirou SA. (1999) Performance enhancement of an integrated collector storage hot water system. Renewable Energy 1999;16:652-5. doi: 10.1016/S0960-1481(98)00245-6.
Kilkis B, Kakaç S. (1989). Importance of Energy Storage. In: Energy Storage Systems, Kilkis B, Kakaç S, editors. Proceedings of the NATO Advanced Study Institute on Energy Storage Systems, Izmir, Turkey, 1988, p. 1–10.
Klein SA, Beckman WA. (1979) A general design method for closed-loop solar energy systems. Solar Energy 1979;22:269-82. doi: 10.1016/0038-092X(79)90142-7.
Krane RJ, Krane MJM. (1992a) The optimum design of stratified thermal energy storage systems- part I: Development of the basic analytical model. ASME Journal of Energy Resources Technology 1992;114:197-203. doi: 10.1115/1.2905941.
Krane RJ, Krane MJM. (1992b) The optimum design of stratified thermal energy storage systems- part II: completion of the analytical model, presentation and interpretation of the results. ASME Journal of Energy Resources Technology 1992;114:204-08. doi.10.1115/1.2905942.
Krane RJ. (1987) A second law analysis of the optimum design and operation of thermal energy storage systems. International Journal of Heat and Mass Transfer 1987;30(1):43–57. doi: 10.1016/0017-9310(87)90059-7.
Krane RJ. (1989). Second Law Optimization of Thermal Energy Storage Systems: Fundamentals and Sensible Heat Systems. In: Energy Storage Systems, Kilkis B, Kakaç S, editors, Proceedings of the NATO Advanced Study Institute on Energy Storage Systems, Izmir, Turkey, 1988, p. 37–67.
Kumar R, Rosen MA. (2011) Integrated collector-storage solar water heater with extended storage unit. Applied Thermal Engineering 2011;31:348-54. doi: 10.1016/j.applthermaleng.2010.09.021.
Laing D, Steinmann WD, Tamme R. (2007). Sensible Heat Storage for Medium and High Temperatures. In: Proceedings of ISES Solar World Congress, Solar Energy and Human Settlement, p. 2731-2735.
Lakshmi DVN, Layek A, Kumar PM. (2017) Performance analysis of trapezoidal corrugated solar air heater with sensible heat storage material. Energy Procedia 2017;109:463-70. doi: 10.1016/j.egypro.2017.03.069.
Lemmon EW, Huber ML, McLinden MO. (2007). Reference Fluid Thermodynamic and Transport Properties–REFPROP, Version 8.0. NIST Standard Reference Database 23.
Mawire A. (2016) Performance of sunflower oil as a sensible heat storage medium for domestic applications. Journal of Energy Storage 2016;5:1-9. doi: 10.1016/j.est.2015.11.002.
McAdams WH, Kennel WE, Minden CS, Car R, Picornell PM, Dew JE. (1949) Heat transfer at high rates to water with surface boiling. Industrial and Engineering Chemistry 1949;41(9):1945-1953. doi: 10.1021/ie50477a027.
Mehla N, Kumar A. (2021) Experimental evaluation of used engine oil based thermal energy storage coupled with novel evacuated tube solar air collector (NETAC). Journal of Energy Storage 2021;39:102656. doi: 10.1016/j.est.2021.102656.
Michaels AI. (1981). An Overview of the U.S.A. Program for the Development of Thermal Energy Storage for Solar Energy Applications. In: Thermal Storage of Solar Energy, Den Ouden C, editor. TNO and Martinus Nijhoff Publishers, Netherlands, p. 79–90.
Moricova K, Papucova I, Durisova S, Janik R., (2019) Determination of engine oil characteristics. IOP Conference Series: Materials Science and Engineering. 776 012099. doi: 10.1088/1757-899X/776/1/012099.
Nunes CA., 2013, Tecnologia de óleos e gorduras para engenharia de alimentos. Cleiton Antônio Nunes. –Lavras : Ed. UFLA.
Paykoç E, Kakaç S. (1987). Solar Thermal Energy Storage. In: Solar Energy Utilization, Yüncü H, Paykoc, E and Yener, Y, editors. NATO ASI Series, Martinus Nijhoff Publishers, Dordrecht. P. 451–489.
Rojas EEG, Coimbra JSR, Telis-Romero J., (2013) Thermophysical properties of cotton, canola, sunflower, and soybean oils as a function of temperature. International Journal of Food Properties 2013;16:1620–1629. doi: 10.1080/10942912.2011.604889.
Schmidt FW, Somers RR, Szego J, Laananen DH. (1977) Design optimization of a single fluid, solid sensible heat storage unit. ASME Journal of Heat Transfer 1977; 99:174–9. doi: 10.1115/1.3450665.
Schmidt FW, Szego J. (1976) Transient response of solid sensible heat thermal storage units-single fluid. ASME Journal of Heat Transfer 1976; 471–7. doi: 10.1115/1.3450578.
Smyth M, Eames PC, Norton B. (2006) Integrated collector storage solar water heaters. Renewable and Sustainable Energy Reviews 2006;10:503-38. doi: 10.1016/j.rser.2004.11.001.
Taylor MJ, Krane RJ; Parsons JR. (1991) Second law optimization of a sensible heat thermal energy storage system with a distributed storage element- part I: Development of the analytical model. ASME Journal of Energy Resources Technology 1991;113:20-6. doi.10.1115/1.2905775.
Tian Y, Zhao CY. (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy 2013;104:538–53. doi:10.1016/j.apenergy.2012.11.051.
West RRE. (1987). High Temperature Sensible Heat Storage. In, Proceedings of the NATO Advanced Study Institute on Solar Energy Utilization, Yüncü H, Paykoc E, Yener Y, editors. Izmir, 1986, Martinus Nijhoff Publishers, p. 490–499.
Winterton, RHS. (1998) Where did the Dittus and Boelter equation come from?. International Journal of Heat and Mass Transfer 1998;41:809-10. doi. 10.1016/s0017-9310(97)00177-4.
Wyman C, Castle J, Kreith F. (1980) A review of collector and energy storage technology for intermediate temperature applications. Solar Energy 1980;24:517–40. doi: 10.1016/0038-092X(80)90352-7.
Zhao BC, Wang RZ. (2019) Perspectives for short-term thermal energy storage using salt hydrates for building heating. Energy 2016;189:116139. doi:10.1016/j.energy.2019.116139.
Zubair SM, Al-Naglah MA. (1999) Thermoeconomic optimization of a sensible-heat thermal-energy-storage system: a complete storage cycle. ASME Journal of Energy Resources Technology 1999;121:286-94. doi: 10.1115/1.2795995.