Urban Green Spaces as a Solution to Urban Heat Island: The Cooling Effect of Sétif’s Amusement Park
Main Article Content
Abstract
The city of Sétif in northeastern Algeria has experienced rapid urbanization over the past three decades, impacting the city climate and thermal comfort conditions for residents, leading to the formation of an urban heat island (UHI) between the city center and the suburbs.
This research aims to study and evaluate the role of urban green spaces (UGS) in mitigating the UHI effect, regulating microclimates, and improving residents' thermal comfort. To investigate the role of UGS in mitigating the UHI effect, regulating microclimates and improving residents' thermal comfort, the methodology followed in this study was based on a measurement campaign conducted at Sétif Amusement Park and its surroundings during summer. While confirming Sétif's UHI, the park recorded lower temperatures and significantly improved thermal comfort compared to the surroundings. The urban park exhibited a significant cooling effect, with a maximal temperature difference of 3.3°C. Substantial improvements in thermal comfort indices were observed, including Predicted Mean Vote differences (3.30), Physiologically Equivalent Temperature (11.4°C), and Universal Thermal Climate Index (6.9°C), highlighting the park's mitigating impact on the UHI. These results demonstrate the potential of UGS to serve as cooling refreshment areas, providing relief from high temperatures and improving the overall quality of urban life.
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
How to Cite
References
Abd Elraouf, R., Elmokadem, A., Megahed, N., Abo Eleinen, O., & Eltarabily, S. (2022). The impact of urban geometry on outdoor thermal comfort in a hot-humid climate. Building and Environment, 225. https://doi.org/10.1016/j.buildenv.2022.109632.
Akbari, H., & Akbari, H. (2005). Passive and Low Energy Cooling 11 for the Built Environment. https://www.researchgate.net/publication/254744057.
Algretawee, H. (2022). The effect of graduated urban park size on park cooling island and distance relative to land surface temperature (LST). Urban Climate, 45. https://doi.org/10.1016/j.uclim.2022.101255.
Alonzo, M., Baker, M. E., Gao, Y., & Shandas, V. (2021). Spatial configuration and time of day impact the magnitude of urban tree canopy cooling. Environmental Research Letters, 16(8). https://doi.org/10.1088/1748-9326/ac12f2.
Alves, F. M., Gonçalves, A., & Enjuto, M. R. D. C. (2022). The Use of Envi-Met for the Assessment of Nature-Based Solutions’ Potential Benefits in Industrial Parks—A Case Study of Argales Industrial Park (Valladolid, Spain). Infrastructures, 7(6). https://doi.org/10.3390/infrastructures7060085.
Amani-Beni, M., Zhang, B., Xie, G. Di, & Odgaard, A. J. (2021). Impacts of the microclimate of a large urban park on its surrounding built environment in the summertime. Remote Sensing, 13(22). https://doi.org/10.3390/rs13224703.
Ballout, A., Bouchahm, Y., & Lacheheb, D. E. Z. (2016). Urban quality through Thermal Comfort Conditions in an Urban Space.The Square of Independence, Sétif, Algeria. 12th International Symposium on Urban Planning and Environment, 148–161. https://doi.org/10.1016/j.amepre.2009.09.012.
Ballout, A., Lacheheb, D. E. Z., & Bouchahm, Y. (2015). Improvement of Thermal Comfort Conditions in an Urban Space (Case Study: The Square of Independence, Sétif, Algeria). European Journal of Sustainable Development, 4(2). https://doi.org/10.14207/ejsd.2015.v4n2p407.
Bilgili, B. C., Sahin, S., Yilmaz, O., Gürbüz, F., & Arici, Y. K. (2013). Temperature distribution and the cooling effects on three urban parks in Ankara, Turkey. International Journal of Global Warming, 5(3), 296–310. https://doi.org/10.1504/IJGW.2013.055364.
Blazejczyk, K., Jendritzky, G., Bröde, P., Fiala, D., Havenith, G., Epstein, Y., Psikuta, A., & Kampmann, B. (2013). An introduction to the Universal thermal climate index (UTCI). Geographia Polonica, 86(1), 5–10. https://doi.org/10.7163/GPol.2013.1.
Bouketta, S., & Bouchahm, Y. (2023). L’effet de la géométrie urbaine sur l’écoulement du vent et la ventilation naturelle extérieure. Journal of Renewable Energies, 15(4). https://doi.org/10.54966/jreen.v15i4.353.
Boukhelkhal, I., & Bourbia, P. F. (2016). Thermal Comfort Conditions in Outdoor Urban Spaces: Hot Dry Climate -Ghardaia- Algeria. Procedia Engineering, 169, 207–215. https://doi.org/10.1016/j.proeng.2016.10.025.
Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning. 97(3), 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006.
Bröde, P. (2021). Issues in UTCI Calculation from a Decade’s Experience. In Applications of the Universal Thermal Climate Index UTCI in Biometeorology (pp. 13–21). Springer International Publishing. https://doi.org/10.1007/978-3-030-76716-7_2.
Bröde, P., Fiala, D., Blazejczyk, K., Holmér, I., Jendritzky, G., Kampmann, B., Tinz, B., & Havenith, G. (2012). Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, 56(3), 481–494. https://doi.org/10.1007/s00484-011-0454-1.
Busato, F., Lazzarin, R. M., & Noro, M. (2014). Three years of study of the Urban Heat Island in Padua: Experimental results. Sustainable Cities and Society, 10, 251–258. https://doi.org/10.1016/j.scs.2013.05.001.
Carne, R. J., 1994. Urban vegetation: ecological and social value. In: A Vision for a Greener City. The Role of Vegetation in Urban Environment. Proceedings: 1994 National Greening Australia Conference (October 4, 5 & 6, Fremantle, WA), Ed. M.A. Scheltema (Greening Australia Ltd, Canberra): 211-225.
Chang, C. R., & Li, M. H. (2014). Effects of urban parks on the local urban thermal environment. Urban Forestry and Urban Greening, 13(4), 672–681. https://doi.org/10.1016/j.ufug.2014.08.001.
Chen, Y. C. (2023). Thermal indices for human biometeorology based on Python. Scientific Reports, 13(1), 20825. https://doi.org/10.1038/s41598-023-47388-y.
Chen, Y., & Wong, N. H. (2006). Thermal benefits of city parks. Energy and Buildings, 38(2), 105–120. https://doi.org/10.1016/j.enbuild.2005.04.003.
Choi, H. A., Lee, W. K., & Byun, W. H. (2012). Determining the effect of green spaces on Urban heat distribution using satellite imagery. Asian Journal of Atmospheric Environment, 6(2), 127–135. https://doi.org/10.5572/ajae.2012.6.2.127.
Corocaescu, A., Ichim, P., Cretu, C. Stefanel, & Sfîca, L. (2023). Assessment of Climate Characteristics of an Urban Park Using Satellite Imagery and In-Situ Measurements. Study Case of Cancicov Park from Bacau City (Romania). Babes Bolyai University Faculty of Geography. ISSN2067743X). 33–46. https://doi.org/10.24193/AWC202304.
Dec, E., Babiarz, B., & Sekret, R. (2018). Analysis of temperature, air humidity and wind conditions for the needs of outdoor thermal comfort. E3S Web of Conferences, 44. https://doi.org/10.1051/e3sconf/20184400028.
Du, Y., & Mak, C. M. (2018). Improving pedestrian level low wind velocity environment in high-density cities: A general framework and case study. Sustainable Cities and Society, 42, 314–324. https://doi.org/10.1016/j.scs.2018.08.001.
Edwards, P. J., Drillet, Z., Richards, D. R., Fung, T. K., & Song, X. P. (2020). Benefits of tropical urban vegetation. Singapore-ETH Centre, Future Cities Laboratory. https://fcl.ethz.ch/news-events/news/2020/07/benefits-of-tropical-urban-vegetation.html.
Fang, Z., Feng, X., & Lin, Z. (2017). Investigation of PMV Model for Evaluation of the Outdoor Thermal Comfort. Procedia Engineering, 205, 2457–2462. https://doi.org/10.1016/j.proeng.2017.09.973.
Gatto, E., Buccolieri, R., Aarrevaara, E., Ippolito, F., Emmanuel, R., Perronace, L., & Santiago, J. L. (2020). Impact of Urban vegetation on outdoor thermal comfort: Comparison between a Mediterranean city (Lecce, Italy) and a northern European city (Lahti, Finland). Forests, 11(2). https://doi.org/10.3390/f11020228.
Hanafi, A., & Alkama, D. (2016). Stratégie d’amélioration du confort thermique d’une place publique d’une ville saharienne “Biskra/Algérie.” Journal of Renewable Energies, 19(3), 465–480. https://doi.org/10.54966/jreen.v19i3.585.
Heusinkveld, B. G., Steeneveld, G. J., Van Hove, L. W. A., Jacobs, C. M. J., & Holtslag, A. A. M. (2014). Spatial variability of the rotterdam urban heat island as influenced by urban land use. Journal of Geophysical Research, 119(2), 677–692. https://doi.org/10.1002/2012JD019399.
Holst, J., & Shashua-Bar, L. (2010). Comparative study of trees impact on human thermal comfort in urban streets under hot–arid and temperate climates. https://www.researchgate.net/publication/303189153.
Höppe P. (1999). The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43, 71–75. https://doi.org/10.1007/s004840050118.
Huang, Z., Wu, C., Teng, M., & Lin, Y. (2020). Impacts of tree canopy cover on microclimate and human thermal comfort in a shallow street canyon in Wuhan, China. Atmosphere, 11(6). https://doi.org/10.3390/atmos11060588.
Huerta, R. E., Yépez, F. D., Lozano-García, D. F., Cobián, V. H. G., Fierro, A. L. F., Gómez, H. de L., González, R. A. C., & Vargas-Martínez, A. (2021). Mapping urban green spaces at the metropolitan level using very high resolution satellite imagery and deep learning techniques for semantic segmentation. Remote Sensing, 13(11). https://doi.org/10.3390/rs13112031.
Huryna, H., & Pokorný, J. (2016). The role of water and vegetation in the distribution of solar energy and local climate: a review. Folia Geobotanica, 51(3), 191–208. https://doi.org/10.1007/s12224-016-9261-0.
Jauregui, E. (1990). Influence of a Large Urban Park on Temperature and Convective Precipitation in a Tropical City. Energy and Buildings, 15(3–4), 457-463, https://doi.org/10.1016/0378-7788(90)90021-A.
Konijnendijk, C.C., Annerstedt, M., Nielsen, A. B., Maruthaveeran, S., (2013). Benefits of Urban Parks: A systematic review. A Report for IFPRA. https://parksleisure.com.au/wp-content/uploads/parc-library/113-0-IfpraBenefitsOfUrbanParks.pdf.
Kulish, T. (2022). Spatial variation of soil temperature fields in an urban park. IOP Conference Series: Earth and Environmental Science, 1049(1). https://doi.org/10.1088/1755-1315/1049/1/012056.
Laouadi, A. (2022). A New General Formulation for the PMV Thermal Comfort Index. Buildings, 12(10). https://doi.org/10.3390/buildings12101572.
Lenzuni, P. (2021). Compliance with limits of acceptability for thermal comfort, and implications for long-term comfort. Building and Environment, 204. https://doi.org/10.1016/j.buildenv.2021.108067.
Li, L., Zhou, X., & Yang, L. (2017). The Analysis of Outdoor Thermal Comfort in Guangzhou during Summer. Procedia Engineering, 205, 1996–2002. https://doi.org/10.1016/j.proeng.2017.10.070.
Liu, Z., Li, J., & Xi, T. (2023). A Review of Thermal Comfort Evaluation and Improvement in Urban Outdoor Spaces. In Buildings, 13(12). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/buildings13123050.
Matallah, M. E., Alkama, D., Ahriz, A., & Attia, S. (2020). Assessment of the outdoor thermal comfort in oases settlements. Atmosphere, 11(2). https://doi.org/10.3390/atmos11020185.
Matzarakis, A., Muthers, S., & Rutz, F. (2014). Application and comparison of UTCI and pet in temperate climate conditions. Finisterra, 49(98), 21–31. https://doi.org/10.18055/Finis6453.
Mayer, H., Kuppe, S., Holst, J., Imbery, F., & Matzarakis, A. (2009). Human thermal comfort below the canopy of street trees on a typical Central European summer day. https://www.researchgate.net/publication/22850675.
Mclntyre, D. (1973). A guide to thermal comfort. Applied Ergonomics, 4(2), 66-72. https://doi.org/ 10.1016/0003- 6870(73)90079-3.
Memon, A.R., Leung, D. Y., & Chunho, L. (2008). A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences 20. 120–128.
Mikami, T., Sugawara, H., Shimizu, S., Hagiwara, S., & Narita, K.-I. (2015). How much does urban green cool town? https://www.researchgate.net/publication/280534513.
Mills, G. (2008). Luke Howard and The Climate of London. Weather, 63(6), 153–157. https://doi.org/10.1002/wea.195.
Nicol, F. (2004). Adaptive thermal comfort standards in the hot-humid tropics. Energy and Buildings, 36(7), 628–637. https://doi.org/10.1016/j.enbuild.2004.01.016.
Nicol, J. F., & Humphreys, M. A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, 34(6), 563–572. https://doi.org/10.1016/S0378-7788(02)00006-3.
Nuruzzaman, Md. (2015). Urban Heat Island: Causes, Effects and Mitigation Measures - A Review. International Journal of Environmental Monitoring and Analysis, 3(2), 67. https://doi.org/10.11648/j.ijema.20150302.15.
Oke T.R. (1987). Boundary Layer Climates. Taylor & Francis. https://doi.org/10.4324/9780203407219.
Paris, M., Sansen, M., Bosc, S., & Devillers, P. (2022). Simulation Tools for the Architectural Design of Middle-Density Housing Estates. Sustainability, 14(17). https://doi.org/10.3390/su141710696.
Park, J., Kim, J. H., Sohn, W., & Lee, D. K. (2021). Urban cooling factors: Do small greenspaces outperform building shade in mitigating urban heat island intensity? Urban Forestry and Urban Greening, 64. https://doi.org/10.1016/j.ufug.2021.127256.
Pezzoli, A., Cristofori, E., Gozzini, B., Marchisio, M., & Padoan, J. (2012). Analysis of the thermal comfort in cycling athletes. Procedia Engineering, 34, 433–438. https://doi.org/10.1016/j.proeng.2012.04.074.
Qin, H., Cheng, X., Han, G., Wang, Y., Deng, J., & Yang, Y. (2021). How thermal conditions affect the spatial-temporal distribution of visitors in urban parks: A case study in Chongqing, China. Urban Forestry and Urban Greening, 66. https://doi.org/10.1016/j.ufug.2021.127393.
Qiu, X., Kil, S. H., Jo, H. K., Park, C., Song, W., & Choi, Y. E. (2023). Cooling Effect of Urban Blue and Green Spaces: A Case Study of Changsha, China. International Journal of Environmental Research and Public Health, 20(3). https://doi.org/10.3390/ijerph20032613.
Ravi, S., & D’Odorico, P. (2005). A field-scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophysical Research Letters, 32(21), 1–4. https://doi.org/10.1029/2005GL023675.
Salameh, M., Elkhazindar, A., & Touqan, B. (2023). The effect of building height on thermal properties and comfort of a housing project in the hot arid climate of the UAE. Frontiers in Built Environment, 9. https://doi.org/10.3389/fbuil.2023.1174147.
Santamouris, M. (2007). Heat Island Research in Europe: The State of the Art. Advances in Building Energy Research, 1(1), 123–150. https://doi.org/10.1080/17512549.2007.9687272.
Santamouris, M. (2014). Cooling the cities - A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 682–703. https://doi.org/10.1016/j.solener.2012.07.003.
Sanusi, R., Johnstone, D., May, P., & Livesley, S. J. (2016). Street Orientation and Side of the Street Greatly Influence the Microclimatic Benefits Street Trees Can Provide in Summer. Journal of Environmental Quality, 45(1), 167–174. https://doi.org/10.2134/jeq2015.01.0039.
Simon, H., Sinsel, T., & Bruse, M. (2021). Advances in simulating radiative transfer in complex environments. Applied Sciences (Switzerland), 11(12). https://doi.org/10.3390/app11125449.
Stark da Silva, P. W., Duarte, D., & Pauleit, S. (2023). The Role of the Design of Public Squares and Vegetation Composition on Human Thermal Comfort in Different Seasons a Quantitative Assessment. Land, 12(2). https://doi.org/10.3390/land12020427.
Sugawara, H., Shimizu, S., Takahashi, H., Hagiwara, S., Narita, K., Mikami, T., & Hirano, T. (2016). Thermal Influence of a Large Green Space on a Hot Urban Environment. Journal of Environmental Quality, 45(1), 125–133. https://doi.org/10.2134/jeq2015.01.0049.
Sukopp, H., & Werner, P. (1983). Urban environments and vegetation. In Man’s impact on vegetation (pp. 247–260). Springer Netherlands. https://doi.org/10.1007/978-94-009-7269-8_19.
Sunita, Kumar, D., & Shekhar, S. (2021). Spatial distribution analysis of urban blue-green spaces for mitigating excessive heat with earth observation systems. Environmental Challenges, 5. https://doi.org/10.1016/j.envc.2021.100390.
Thom, J. K., Coutts, A. M., Broadbent, A. M., & Tapper, N. J. (2016). The influence of increasing tree cover on mean radiant temperature across a mixed development suburb in Adelaide, Australia. Urban Forestry and Urban Greening, 20, 233–242. https://doi.org/10.1016/j.ufug.2016.08.016.
van Hoof, J., Schellen, L., Soebarto, V., Wong, J. K. W., & Kazak, J. K. (2017). Ten questions concerning thermal comfort and ageing. Building and Environment, 120, 123–133. https://doi.org/10.1016/j.buildenv.2017.05.008.
Walls, W., Parker, N., & Walliss, J. (2015). Designing with thermal comfort indices in outdoor sites. R.H. Crawford and A. Stephan (eds.), Living and Learning: Research for a Better Built Environment: 49th International Conference of the Architectural Science Association 2015, 1117–1128. The Architectural Science Association and The University of Melbourne.
Wong, N. H., & Yu, C. (2005). Study of green areas and urban heat island in a tropical city. Habitat International, 29(3), 547–558. https://doi.org/10.1016/j.habitatint.2004.04.008.
Wu, P., Zhang, Y., Fang, Z., & Gao, Y. (2022). Comparison of thermal comfort in different kinds of building spaces: Field study in Guangzhou, China. Indoor and Built Environment, 31(1), 186–202. https://doi.org/10.1177/1420326X20981714.
Xiao, X. D., Dong, L., Yan, H., Yang, N., & Xiong, Y. (2018). The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou Industrial Park. Sustainable Cities and Society, 40, 428–439. https://doi.org/10.1016/j.scs.2018.04.002.
Yan, H., & Dong, L. (2015). The impacts of land cover types on urban outdoor thermal environment: the case of Beijing, China. Journal of Environmental Health Science and Engineering, 13(1). https://doi.org/10.1186/s40201-015-0195-x.
Yan, H., Wu, F., & Dong, L. (2018). Influence of a large urban park on the local urban thermal environment. Science of the Total Environment, 622–623, 882–891. https://doi.org/10.1016/j.scitotenv.2017.11.327.
Yang, J., Hu, X., Feng, H., & Marvin, S. (2021). Verifying an ENVI-met simulation of the thermal environment of Yanzhong Square Park in Shanghai. Urban Forestry and Urban Greening, 66. https://doi.org/10.1016/j.ufug.2021.127384.
Yang, P., Xiao, Z. N., & Ye, M. S. (2016). Cooling effect of urban parks and their relationship with urban heat islands. Atmospheric and Oceanic Science Letters, 9(4), 298–305. https://doi.org/10.1080/16742834.2016.1191316.
Zakaria, N. H., Salleh, S. A., Asmat, A., Chan, A., Isa, N. A., Hazali, N. A., & Islam, M. A. (2020). Analysis of Wind Speed, Humidity and Temperature: Variability and Trend in 2017. IOP Conference Series: Earth and Environmental Science, 489(1). https://doi.org/10.1088/1755-1315/489/1/012013.
Zhang, K., Yun, G., Song, P., Wang, K., Li, A., Du, C., Jia, X., Feng, Y., Wu, M., Qu, K., Zhu, X., & Ge, S. (2023). Discover the Desirable Landscape Structure of Urban Parks for Mitigating Urban Heat: A High Spatial Resolution Study Using a Forest City, Luoyang, China as a Lens. International Journal of Environmental Research and Public Health, 20(4), 3155. https://doi.org/10.3390/ijerph20043155.
Websites:
APPA. (2019). Végétation urbaine : les enjeux pour l’environnement et la santé. https://www.appa.asso.fr/wp-content/uploads/2019/10/Végétation-urbaine-les-enjeux-pour-lenvironnement-et-la-santé.pdf.
Climat-data. (2023). Climat Sétif. https://fr.climate-data.org/afrique/algerie/setif/setif-3595/.
Climate Change Heat Impact & Prevention | Climate CHIP. (2024). https://climatechip.org/.
ENVI-met. (2023). BioMet: Calculating the PMV Value. https://envi-met.info/doku.php?id=apps:biomet_pmv&s[]=pmv.
Ritchie, H. & Roser, M. (2018) - "Urbanization". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/urbanization'.
United Nations Department of Economic and Social Affairs Population Division. (2018). World Urbanization Prospects The 2018 Revision.