Photocatalytic properties of Mn2O3 nanoparticles synthesized via green chemistry method
Main Article Content
Abstract
The objective of this work is to synthesize Mn2O3 nanoparticles (NPs) using green method based on olive leaf extract (OLE). These nanoparticles are intended for photocatalytic applications, specifically the degradation of pollutants and dyes using methylene blue (MB) as a test substance. The synthesized material, initially described as manganese oxide (Mn2O3), was characterized using various techniques: thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), FT-IR, Raman and UV-visible spectroscopies. Additionally, the photocatalytic tests were performed. XRD analysis revealed the formation of Bixbyite (Mn2O3) phases. Raman and FT-IR spectroscopy confirmed the presence of Mn-O bonds within the synthesized material. The TGA results supported the decomposition of organic compounds and the formation of the Mn2O3. The photocatalytic degradation tests with methylene blue yielded promising results. The addition of the synthesized material (Mn2O3) significantly enhanced the degradation of methylene blue, achieving an efficiency of 87.8%.
Article Details
Section

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
How to Cite
References
Ahmad T, Ramanujachary KV, Loftland SV, Ganguli AK. (2004) Nanorods of manganese oxalate: a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). J. Mater. Chem, 14:3406-3410. https://doi.org/10.1039/B409010A
Amsaveni P, Nivetha A, Sakthivel C, Suresh Philip C, Prabha I. (2020) Effectiveness of surfactants for unique hierarchical Mn2O3 nanomaterials as enhanced oxidative catalysts, antibacterial agents, and photocatalysts. J. Phys. Chem. Solid, 144:109429. https://doi.org/10.1016/j.jpcs.2020.109429
Banis MN, Zhang Y, Banis HN, Li R, Sun X, Jiang X, Nikanpour D. (2011) Controlled synthesis and characterization of single crystalline MnO nanowires and Mn–Si oxide heterostructures by vapor phase deposition. Chem. Phys. Lett, 501: 470-474. https://doi.org/10.1016/j.cplett.2010.11.078
Chaguetmi S, Mammeri F, Nowak S, Decorse P, Lecoq H, Gaceur M, Ben Naceur J, Achour S, Chtourou R, Ammar S. (2013) Photocatalytic activity of TiO2 nanofibers sensitized with ZnS quantum dots. RSC Adv, 3:2572-2580. https://doi.org/10.1039/C2RA21684A
Chandiran K, Murugesan RA, Balaji R, Andrews NG, Pitchaimuthu S, Nagamuthu Raja KC.2020 Long single crystalline a-Mn2O3 nanorods: facile synthesis and photocatalytic application. Mater. Res. Express, 7 (7):074001-074011. https://doi.org/10.1088/2053-1591/ab9fbd
Clark JH. (1999) Green chemistry: challenges and opportunities. Green. Chem, 1:1-8. https://doi.org/10.1039/A807961G
Davar F, Mohandes F, Salavati-Niasari M. (2009) Synthesis and characterization manganese oxide nanobundles from decomposition of manganese oxalate, Inorg. Chim. Acta, 362 :3663-3668.https://doi.org/10.1016/j.ica.2009.04.022
Dey S, Praveen Kumar VV. (2020) The performance of highly active manganese oxide catalysts for ambient conditions carbon monoxide oxidation, Current Res. Green and Sustainable Chem, 3: 100012-100027. https://doi.org/10.1016/j.crgsc.2020.100012
Duan H, Wan D, Li Y. (2015) Green chemistry for nanoparticle synthesis. Chem. Soc. Rev, 44: 5778-5792. https://doi.org/10.1039/C4CS00363B
Fernández-Ibáñez F, Blanco J, Malato S, de las Nieves FJ. (2003) Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis. Water Research, 37: 3180-3188.DOI: 10.1016/s0043-1354(03)00157-x
Ghosh M, Biswas K, Sundaresan A, Rao CNR. (2006) MnO and NiO nanoparticles: synthesis and magnetic properties. J. Mater. Chem, 16:106-111. DOI: 10.1039/B511920K
Gnanam S, Rajendran V. (2013) Facile hydrothermal synthesis of alpha manganese sesquioxide (a-Mn2O3) nanodumb-bells: Structural, magnetic, optical and photocatalytic Properties. J. All. Compds, 550:463-470. https://doi.org/10.1016/j.jallcom.2012.10.172
Han YF, Chen FX, Zhong ZY, Ramesh K, Chen LW, Widjaja E. (2006) Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous Silica SBA-15. J. Phys. Chem, 110:24450-24456.https://doi.org/10.1021/jp064941v
Hou Y, Kondoh H, Ohta T, Gao S. (2005) Size-controlled synthesis of nickel nanoparticles, Appl. Surf. Sci, 241:218-222. https://doi.org/10.1016/j.apsusc.2004.09.045
Lei S, Tang K, Fang Z, Liu Q, Zheng H. (2006) Preparation of a-Mn2O3 and MnO from thermal decomposition of MnCO3 and control of morphology, Mater. Lett, 60: 53-56. https://doi.org/10.1016/j.matlet.2005.07.070
Munir G, Elsayed Ahmed Mohamed H, Hkiri K, Ghotekar S, Maaza M. (2024) Phyto-mediated fabrication of Mn2O3 nanoparticles using Hyphaene thebaica fruit extract as a promising photocatalyst for MB dye degradation. Inorganic Chemistry Communications, 167:112695-112703.https://doi.org/10.1016/j.inoche.2024.112695
Naeem R, Ali M, Rosiyah Yahya E. (2016) Fabrication of pristine Mn2O3 and Ag-Mn2O3 composite thin films by AACVD for photoelectrochemical water splitting. Dalton Transactions, 45:14928-14939. https://doi.org/10.1039/C6DT02656G
Nayak S K, Jena P. (1999) Equilibrium geometry, stability, and magnetic properties of small MnO clusters. J. Am. Chem. Soc, 121:644-652. https://doi.org/10.1021/ja981721p
Sevilla M, Fuertes AB. (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem Eur J, 15: 4195-4203.DOI: 10.1002/chem.200802097
Shanmugam S, Gedanken A. (2006) MnO octahedral nanocrystals and MnO@C core– shell composites: synthesis, characterization, and electrocatalytic properties. J. Phys. Chem. B, 110: 24486-24491.https://doi.org/10.1021/jp0657585
Sobti N, Chaguetmi S, Achour S, Chaperman L, Mammeri F, Ammar-Merah S. (2021) Manganese oxide nanoparticles prepared by olive leaf extract-mediated wet chemistry and their supercapacitor properties. Journal of Solid-State Sciences, 113:106551-106558. https://doi.org/10.1016/j.solidstatesciences.2021.106551
Tang Z, Kotov NA, Giersig M. (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 297:237-240. DOI: 10.1126/science.1072086
Thuille N, Fille M, Nagl M. (2003) Bactericidal activity of herbal extracts. Int. J. Hyg. Environ. Health, 206: 217-221. https://doi.org/10.1078/1438-4639-00217.
Tuli HS, Kashyap D, Bedi SK, Kumar G, Sandhu SS. (2015) Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects. Life Sci, 143:71-79.https://doi.org/10.1016/j.lfs.2015.10.021
Vaseem M, Umar A, Hahn YB, Kim DH, Lee KS, Jang JS, Lee JS. (2008) Flower shaped CuO nanostructures: structural, photocatalytic and XANES studies. Catal. Commun, 10:11-16.https://doi.org/10.1016/j.catcom.2008.07.022
Zhang Z, Sun H, Shao X, Li D, Yu H, Han M. (2005) Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures. Adv. Mater, 17:42-47. https://doi.org/10.1002/adma.200400401
Zheng M, Liu Y, Jiang K, Xiao Y, Yuan D. (2010) Alcohol-assisted hydrothermal carbonization to fabricate spheroidal carbons with a tunable shape and aspect ratio. Carbon, 48 :1224-1233.https://doi.org/10.1016/j.carbon.2009.11.045
Zheng M, Zhang H, Gong X, Xu R, Xiao Y, Dong H, Liu X, Liu Y. (2013) A simple additive-free approach for the synthesis of uniform manganese monoxide nanorods with large specific surface area. Nanoscale Research Letters, 8:166-174. https://doi.org/10.1186/1556-276X-8-166
Zikalala N, Matshetshe K, Parani Oluwafemi SO. (2018) Biosynthesis protocols for colloidal metal oxide nanoparticles. Nano-Structures & Nano-Objects, 16:288-299. http://doi.org/10.1016/j.nanoso.2018.07.010.