Photocatalytic properties of Mn2O3 nanoparticles synthesized via green chemistry method

Main Article Content

Nadjah Sobti
samiha Chaguetmi
Leila Amiour
Youcef Aouabdia
lynda Saci

Abstract

The objective of this work is to synthesize Mn2O3 nanoparticles (NPs) using green method based on olive leaf extract (OLE). These nanoparticles are intended for photocatalytic applications, specifically the degradation of pollutants and dyes using methylene blue (MB) as a test substance. The synthesized material, initially described as manganese oxide (Mn2O3), was characterized using various techniques: thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), FT-IR, Raman and UV-visible spectroscopies. Additionally, the photocatalytic tests were performed. XRD analysis revealed the formation of Bixbyite (Mn2O3) phases. Raman and FT-IR spectroscopy confirmed the presence of Mn-O bonds within the synthesized material. The TGA results supported the decomposition of organic compounds and the formation of the Mn2O3. The photocatalytic degradation tests with methylene blue yielded promising results. The addition of the synthesized material (Mn2O3) significantly enhanced the degradation of methylene blue, achieving an efficiency of 87.8%.


 

Article Details

Section

special

How to Cite

[1]
“Photocatalytic properties of Mn2O3 nanoparticles synthesized via green chemistry method”, J. Ren. Energies, vol. 1, no. 1, pp. 69 – 77, Feb. 2025, doi: 10.54966/jreen.v28i1.1339.

References

Ahmad T, Ramanujachary KV, Loftland SV, Ganguli AK. (2004) Nanorods of manganese oxalate: a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). J. Mater. Chem, 14:3406-3410. https://doi.org/10.1039/B409010A

Amsaveni P, Nivetha A, Sakthivel C, Suresh Philip C, Prabha I. (2020) Effectiveness of surfactants for unique hierarchical Mn2O3 nanomaterials as enhanced oxidative catalysts, antibacterial agents, and photocatalysts. J. Phys. Chem. Solid, 144:109429. https://doi.org/10.1016/j.jpcs.2020.109429

Banis MN, Zhang Y, Banis HN, Li R, Sun X, Jiang X, Nikanpour D. (2011) Controlled synthesis and characterization of single crystalline MnO nanowires and Mn–Si oxide heterostructures by vapor phase deposition. Chem. Phys. Lett, 501: 470-474. https://doi.org/10.1016/j.cplett.2010.11.078

Chaguetmi S, Mammeri F, Nowak S, Decorse P, Lecoq H, Gaceur M, Ben Naceur J, Achour S, Chtourou R, Ammar S. (2013) Photocatalytic activity of TiO2 nanofibers sensitized with ZnS quantum dots. RSC Adv, 3:2572-2580. https://doi.org/10.1039/C2RA21684A

Chandiran K, Murugesan RA, Balaji R, Andrews NG, Pitchaimuthu S, Nagamuthu Raja KC.2020 Long single crystalline a-Mn2O3 nanorods: facile synthesis and photocatalytic application. Mater. Res. Express, 7 (7):074001-074011. https://doi.org/10.1088/2053-1591/ab9fbd

Clark JH. (1999) Green chemistry: challenges and opportunities. Green. Chem, 1:1-8. https://doi.org/10.1039/A807961G

Davar F, Mohandes F, Salavati-Niasari M. (2009) Synthesis and characterization manganese oxide nanobundles from decomposition of manganese oxalate, Inorg. Chim. Acta, 362 :3663-3668.https://doi.org/10.1016/j.ica.2009.04.022

Dey S, Praveen Kumar VV. (2020) The performance of highly active manganese oxide catalysts for ambient conditions carbon monoxide oxidation, Current Res. Green and Sustainable Chem, 3: 100012-100027. https://doi.org/10.1016/j.crgsc.2020.100012

Duan H, Wan D, Li Y. (2015) Green chemistry for nanoparticle synthesis. Chem. Soc. Rev, 44: 5778-5792. https://doi.org/10.1039/C4CS00363B

Fernández-Ibáñez F, Blanco J, Malato S, de las Nieves FJ. (2003) Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis. Water Research, 37: 3180-3188.DOI: 10.1016/s0043-1354(03)00157-x

Ghosh M, Biswas K, Sundaresan A, Rao CNR. (2006) MnO and NiO nanoparticles: synthesis and magnetic properties. J. Mater. Chem, 16:106-111. DOI: 10.1039/B511920K

Gnanam S, Rajendran V. (2013) Facile hydrothermal synthesis of alpha manganese sesquioxide (a-Mn2O3) nanodumb-bells: Structural, magnetic, optical and photocatalytic Properties. J. All. Compds, 550:463-470. https://doi.org/10.1016/j.jallcom.2012.10.172

Han YF, Chen FX, Zhong ZY, Ramesh K, Chen LW, Widjaja E. (2006) Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous Silica SBA-15. J. Phys. Chem, 110:24450-24456.https://doi.org/10.1021/jp064941v

Hou Y, Kondoh H, Ohta T, Gao S. (2005) Size-controlled synthesis of nickel nanoparticles, Appl. Surf. Sci, 241:218-222. https://doi.org/10.1016/j.apsusc.2004.09.045

Lei S, Tang K, Fang Z, Liu Q, Zheng H. (2006) Preparation of a-Mn2O3 and MnO from thermal decomposition of MnCO3 and control of morphology, Mater. Lett, 60: 53-56. https://doi.org/10.1016/j.matlet.2005.07.070

Munir G, Elsayed Ahmed Mohamed H, Hkiri K, Ghotekar S, Maaza M. (2024) Phyto-mediated fabrication of Mn2O3 nanoparticles using Hyphaene thebaica fruit extract as a promising photocatalyst for MB dye degradation. Inorganic Chemistry Communications, 167:112695-112703.https://doi.org/10.1016/j.inoche.2024.112695

Naeem R, Ali M, Rosiyah Yahya E. (2016) Fabrication of pristine Mn2O3 and Ag-Mn2O3 composite thin films by AACVD for photoelectrochemical water splitting. Dalton Transactions, 45:14928-14939. https://doi.org/10.1039/C6DT02656G

Nayak S K, Jena P. (1999) Equilibrium geometry, stability, and magnetic properties of small MnO clusters. J. Am. Chem. Soc, 121:644-652. https://doi.org/10.1021/ja981721p

Sevilla M, Fuertes AB. (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem Eur J, 15: 4195-4203.DOI: 10.1002/chem.200802097

Shanmugam S, Gedanken A. (2006) MnO octahedral nanocrystals and MnO@C core– shell composites: synthesis, characterization, and electrocatalytic properties. J. Phys. Chem. B, 110: 24486-24491.https://doi.org/10.1021/jp0657585

Sobti N, Chaguetmi S, Achour S, Chaperman L, Mammeri F, Ammar-Merah S. (2021) Manganese oxide nanoparticles prepared by olive leaf extract-mediated wet chemistry and their supercapacitor properties. Journal of Solid-State Sciences, 113:106551-106558. https://doi.org/10.1016/j.solidstatesciences.2021.106551

Tang Z, Kotov NA, Giersig M. (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 297:237-240. DOI: 10.1126/science.1072086

Thuille N, Fille M, Nagl M. (2003) Bactericidal activity of herbal extracts. Int. J. Hyg. Environ. Health, 206: 217-221. https://doi.org/10.1078/1438-4639-00217.

Tuli HS, Kashyap D, Bedi SK, Kumar G, Sandhu SS. (2015) Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects. Life Sci, 143:71-79.https://doi.org/10.1016/j.lfs.2015.10.021

Vaseem M, Umar A, Hahn YB, Kim DH, Lee KS, Jang JS, Lee JS. (2008) Flower shaped CuO nanostructures: structural, photocatalytic and XANES studies. Catal. Commun, 10:11-16.https://doi.org/10.1016/j.catcom.2008.07.022

Zhang Z, Sun H, Shao X, Li D, Yu H, Han M. (2005) Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures. Adv. Mater, 17:42-47. https://doi.org/10.1002/adma.200400401

Zheng M, Liu Y, Jiang K, Xiao Y, Yuan D. (2010) Alcohol-assisted hydrothermal carbonization to fabricate spheroidal carbons with a tunable shape and aspect ratio. Carbon, 48 :1224-1233.https://doi.org/10.1016/j.carbon.2009.11.045

Zheng M, Zhang H, Gong X, Xu R, Xiao Y, Dong H, Liu X, Liu Y. (2013) A simple additive-free approach for the synthesis of uniform manganese monoxide nanorods with large specific surface area. Nanoscale Research Letters, 8:166-174. https://doi.org/10.1186/1556-276X-8-166

Zikalala N, Matshetshe K, Parani Oluwafemi SO. (2018) Biosynthesis protocols for colloidal metal oxide nanoparticles. Nano-Structures & Nano-Objects, 16:288-299. http://doi.org/10.1016/j.nanoso.2018.07.010.

Similar Articles

You may also start an advanced similarity search for this article.