Impact of using corrugated wall and nanofluid on the performance improvement of thermoelectric generator mounted channels

Main Article Content

Hessem Djeddou
Brahim Fersadou
Henda Kahalerras
Mohamed Benelhaoues

Abstract

The influence of using a corrugated wall as a passive heat transfer enhancement technique for the sake of improving the power generation of thermoelectric generator (TEG) located in between two corrugated channels flowing nanofluid has been numerically examined. The upper and the lower channels carry hot and cold water-based single-walled carbon nanotube nanofluid (SWCNT), respectively. Finite element method, FEM, is chosen to tackle the 3D steady-state equations governing the TEG with associated boundary conditions. Several parameters related to the performance of thermoelectric generator such as Reynolds number (between 50 and 1000) and the number of corrugations (between 1 and 5) were in depth assessed. The findings indicate that the Reynolds number plays a significant role in improving thermoelectric power generation. When the Reynolds number increases, TEG produces a higher electric power value. However, the results also reveal that the number of corrugations has a limited impact on the performance of TEG.

Article Details

Section

special

How to Cite

[1]
“Impact of using corrugated wall and nanofluid on the performance improvement of thermoelectric generator mounted channels”, J. Ren. Energies, vol. 1, no. 1, pp. 27 – 41, Feb. 2025, doi: 10.54966/jreen.v28i1.1344.

References

Aridi, R., Faraj, J., Ali, S., Lemenand, T., & Khaled, M. (2021). Thermoelectric Power Generators: State-of-the-Art, Heat Recovery Method, and Challenges. Electricity, 2(3), 359-386. https://www.mdpi.com/2673-4826/2/3/22

Casi, Á., Araiz, M., Catalán, L., & Astrain, D. (2021). Thermoelectric heat recovery in a real industry: From laboratory optimization to reality. Applied Thermal Engineering, 184, 116275. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2020.116275

Chen, W.-H., Chiou, Y.-B., Chein, R.-Y., Uan, J.-Y., & Wang, X.-D. (2022). Power generation of thermoelectric generator with plate fins for recovering low-temperature waste heat. Applied Energy, 306, 118012. https://doi.org/https://doi.org/10.1016/j.apenergy.2021.118012

Kim, C. S., Lee, G. S., Choi, H., Kim, Y. J., Yang, H. M., Lim, S. H., Lee, S.-G., & Cho, B. J. (2018). Structural design of a flexible thermoelectric power generator for wearable applications. Applied Energy, 214, 131-138. https://doi.org/https://doi.org/10.1016/j.apenergy.2018.01.074

Kramer, L. R., Maran, A. L. O., de Souza, S. S., & Ando Junior, O. H. (2019). Analytical and Numerical Study for the Determination of a Thermoelectric Generator’s Internal Resistance. Energies, 12(16), 3053. https://www.mdpi.com/1996-1073/12/16/3053

LaLonde, A. D., Pei, Y., Wang, H., & Jeffrey Snyder, G. (2011). Lead telluride alloy thermoelectrics. Materials Today, 14(11), 526-532. https://doi.org/https://doi.org/10.1016/S1369-7021(11)70278-4

Luo, D., Yan, Y., Wang, R., & Zhou, W. (2021). Numerical investigation on the dynamic response characteristics of a thermoelectric generator module under transient temperature excitations. Renewable energy, 170, 811-823. https://doi.org/https://doi.org/10.1016/j.renene.2021.02.026

Mostafavi, S. A., & Mahmoudi, M. (2018). Modeling and fabricating a prototype of a thermoelectric generator system of heat energy recovery from hot exhaust gases and evaluating the effects of important system parameters. Applied Thermal Engineering, 132, 624-636. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2018.01.018

Nugraha, N. A., Baskoro, D. C., Riyadi, T. W. B., & Wijayanta, A. T. (2024). Thermal characteristics of thermoelectric generator at various heating rates: Experimental and numerical assessments. Thermal Science and Engineering Progress, 52, 102671. https://doi.org/https://doi.org/10.1016/j.tsep.2024.102671

Orr, B., Akbarzadeh, A., & Lappas, P. (2017). An exhaust heat recovery system utilising thermoelectric generators and heat pipes. Applied Thermal Engineering, 126, 1185-1190. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2016.11.019

Oviedo-Tolentino, F., Romero-Méndez, R., Hernández-Guerrero, A., & Girón-Palomares, B. (2008). Experimental study of fluid flow in the entrance of a sinusoidal channel. International Journal of Heat and Fluid Flow, 29(5), 1233-1239. https://doi.org/https://doi.org/10.1016/j.ijheatfluidflow.2008.03.017

Polozine, A., Sirotinskaya, S., & Schaeffer, L. (2014). History of Development of Thermoelectric Materials for Electric Power Generation and Criteria of their Quality. Materials Research-ibero-american Journal of Materials, 17, 1260-1267.

Proto, A., Peter, L., Cerny, M., Penhaker, M., Bibbo, D., Conforto, S., & Schmid, M. (2018, 17-20 Sept. 2018). Human Body Energy Harvesting Solutions for Wearable Technologies. 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom),

Scherrer, H., Rowe, D., Kajikawa, T., Matsubara, K., Issi, J.-P., Goldsmid, H. J., Bhandari, C. M., Burkov, A. T., Zaitsev, V. K., & Fedorov, M. I. (2018). Thermoelectrics Handbook: Macro to Nano.

Selimefendigil, F., Omri, M., Aich, W., Besbes, H., Ben Khedher, N., Alshammari, B. M., & Kolsi, L. (2023). Numerical Study of Thermo-Electric Conversion for TEG Mounted Wavy Walled Triangular Vented Cavity Considering Nanofluid with Different-Shaped Nanoparticles. Mathematics, 11(2), 483. https://www.mdpi.com/2227-7390/11/2/483

Selimefendigil, F., & Öztop, H. F. (2023). Impacts of using helical coils (HCs) on the performance improvements of thermoelectric device mounted channels and modeling by using soft computing techniques. Sustainable Energy Technologies and Assessments, 56, 103067. https://doi.org/https://doi.org/10.1016/j.seta.2023.103067

Wang, Z., Leonov, V., Fiorini, P., & Van Hoof, C. (2009). Realization of a wearable miniaturized thermoelectric generator for human body applications. Sensors and Actuators A: Physical, 156(1), 95-102. https://doi.org/https://doi.org/10.1016/j.sna.2009.02.028

Zhao, Y., Wang, S., Ge, M., Li, Y., & Liang, Z. (2017). Analysis of thermoelectric generation characteristics of flue gas waste heat from natural gas boiler. Energy Conversion and Management, 148, 820-829. https://doi.org/https://doi.org/10.1016/j.enconman.2017.06.029

Zoui, M. A., Bentouba, S., Stocholm, J. G., & Bourouis, M. (2020). A Review on Thermoelectric Generators: Progress and Applications. Energies, 13(14), 3606. https://www.mdpi.com/1996-1073/13/14/3606

Similar Articles

You may also start an advanced similarity search for this article.