Numerical Investigation of Aerodynamic Behaviors Inside and Outside a Tunnel Greenhouse

Main Article Content

Mohammed Aissa
Bachir Dadda
Azzeddine Boutelhig
Salima Laouar

Abstract

The study of greenhouse microclimates presents a significant challenge in the field of scientific research. Variations in aerodynamic parameters both inside and outside the greenhouse are of great importance, as they are associated with changes in air energy and motion simultaneously. However, these sensitive parameters have not been emphasized in the literature as much as temperature, humidity, and carbon dioxide concentration inside greenhouses. Variations in pressure, as well as drag and lift coefficients, can be significantly influenced by external factors such as air velocity and solar radiation intensity.


A computational fluid dynamics (CFD) study is conducted in this work, utilizing Fluent software for post-processing. The analysis is based on the Navier-Stokes fluid dynamics equations, which are solved using the finite volume method and incorporate the Large Eddy Simulation (LES) Smagorinsky turbulence model. The study focuses on the development of aerodynamic coefficient parameters both inside and outside the greenhouse, which can significantly impact the materials used in greenhouse construction, such as polyethylene or Plexiglas coverings, and iron or aluminum framing.

Article Details

Section

special

How to Cite

[1]
M. Aissa, B. . Dadda, A. . Boutelhig, and S. . Laouar, “Numerical Investigation of Aerodynamic Behaviors Inside and Outside a Tunnel Greenhouse”, J. Ren. Energies, vol. 1, no. 1, pp. 15 – 29, Sep. 2025, doi: 10.54966/jreen.v1i1.1378.

References

Aissa, M., Bouabdallah, A., and Oualli, H. (2014). Radial Deformation Frequency Effect on the Three Dimensional Flow in the Cylinder Wake. ASME. J. Fluids Eng. January 2015; 137(1): 011104. https://doi.org/10.1115/ 1.4028008.

Aissa, M. & Boutelhig, A. (2021). CFD Comparative Study between Different Forms of Solar Greenhouses and Orientation Effect. International Journal of Heat and Technology. Vol. 39, No. 2, April, 2021, pp. 433-440. https://doi.org/10.18280/ijht.390212.

Bartzanas, T., Katsoulas, N., Kittas, C., Boulard, T. & Mermier, M. (2005). The Effect of Vent Configuration and Insect Screens on Greenhouse Microclimate, International Journal of Ventilation, 4:3, 193-202, DOI: 10.1080/14733315.2005.12021990.

Bernardini, E., Spence, S. M. J., Wei, D., & Kareem, A. (2015). Aerodynamic shape optimization of civil structures: A CFD enabled kriging-based approach. Journal of Wind Engineering and Industrial Aerodynamics, 144, 154e164. https://doi.org/ 10.1016/j.jweia.2015.03.011.

Braza, M., Faghani, D., Persillon, H. (2017). Successive stages and role of natural vortex dislocations in the threedimensional wake transition. J. Fluid Mech, 439: 1-43.https://doi.org/10.1017/jfm.2017.146.

Briassoulis, D., Waaijenberg, D., Gratraud, J., & von Eslner, B. (1997). Mechanical properties of covering materials for greenhouses: Part 1, general overview. Journal of Agricultural Engineering Research, 67(2), 81e96. https://doi.org/10.1006/jaer.1997.0154.

Cheng See Yuan (2007). The Effect of Building Shape Modification on Wind Pressure Differences for Cross-Ventilation of a Low-Rise Building, International Journal of Ventilation, 6:2, 167-176, DOI: 10.1080/14733315.2007.11683775.

Cuce, E., Harjunowibowo, D., & Cuce, P. M. (2016). Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review. Renewable and Sustainable Energy Reviews, 64, 34e59. https://doi.org/10.1016/j.rser.2016.05.077.

Elshaer, A., & Bitsuamlak, G. (2018). Multiobjective aerodynamic optimization of tall building openings for wind-induced load reduction. Journal of Structural Engineering, 144(10), Article 04018198. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002199.

Flores-Velazquez, J., Arzeta, A., Ojeda, W., & VillarrealGuerrero, F. (2018). Computational fluid dynamics analysis of the wind drag force in a typical Mexican screenhouse. Acta Horticultare, 1227, 99e106. https://doi.org/10.17660/ActaHortic.2018.1227.12.

Fouad, N. S., Mahmoud, G. H., & Nasr, N. E. (2018). Comparative study international codes wind loads and CFD results for low rise buildings. Alexandria Engineering Journal, 57(4), 3623e3639. https://doi.org/10.1016/j.aej.2017.11.023.

Hawendi, S. & Gao, S. (2018). Impact of windward inlet-opening positions on fluctuation characteristics of wind-driven natural cross ventilation in an isolated house using LES, International Journal of Ventilation, 17:2, 93-119, DOI: 10.1080/14733315.2017.1356054.

Ho, T. C. E., Surry, D., & Davenport, A. G. (1992). Low buildings wind load variability with application to codes. Journal of Wind Engineering and Industrial Aerodynamics, 43(1e3), 1787e1798. https://doi.org/10.1016/0167-6105(92)90591-W.

Kateris, D. L., Kotsopoulos, T. A., Fragos, V. P., & Martzoupoulou, C. N. (2012). Numerical estimation of pressure coefficients over single and multispan duo pitched roof greenhouses. Acta Horticulturae, 952, 155e161. https://doi.org/10.17660/ActaHortic.2012.952.18.

Kim, R., Lee, I., & Kwon, K. (2017). Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 1: Development of the CFD model. Biosystems Engineering, 164, 235e256. https://doi.org/10.1016/j.biosystemseng.2017.09.008.

Kuroyanagi, T. (2017). Investigating air leakage and wind pressure coefficients of single-span plastic greenhouses using computational fluid dynamics. Biosystems Engineering, 163, 15e27. https://doi.org/10.1016/j.biosystemseng.2017.08.004.

Kwon, K., Kim, D., Kim, R., Ha, T., & Lee, I. (2016). Evaluation of wind pressure coefficients of single-span greenhouses built on reclaimed coastal land using a large-sized wind tunnel. Biosystems Engineering, 141, 58e81. https://doi.org/10.1016/j.biosystemseng.2015.11.007.

Lohner, R., Haug, E., Michalski, A., Muhammad, B., Drego, A., Nanjundaiah, R., & Zarfam, R. (2015). Recent advances in computational wind engineering and fluid-structure interaction. Journal of Wind Engineering and Industrial Aerodynamics, 144, 14e23. https://doi.org/10.1016/j.jweia.2015.04.014.

Mistriotis, A., & Briassoulis, D. (2002). Numerical estimation of the internal and external aerodynamic coefficients of a tunnel greenhouse structure with openings. Computers and Electronics in Agriculture, 34(1e3), 191e205. https://doi.org/10.1016/S0168-1699(01)00187-9.

Moriyama, H., Sase, S., Okushima, L., & Ishii, M. (2015). Which design constraints apply to a pipe-framed greenhouse? Japan Agricultural Research Quarterly JARQ, 49(1), 1e9. https://doi.org/10.6090/jarq.49.1.

Ponce, P., Molina, A., Cepeda, P., Lugo, E., & Maccleery, B. (2014). Greenhouse design and control. London: CRC Press.

Rico-Garcia, E., Soto-Zarazúa, G, Alatorre-Jacome, O., De la Torre-Gea, G. & Gomez-Melendez, D. (2011). Aerodynamic study of greenhouses using computational fluid dynamics. International Journal of the Physical Sciences, 6(28), 6541e6547. https://doi.org/10.5897/IJPS11.852.

San, B., Xu, C., & Qiu, Y. (2019). Three-dimensional aerodynamic optimization of single-layer reticulated cylindrical roofs subjected to mean wind loads. Advances in Civil Engineering, 2019, 1e13. https://doi.org/10.1155/2019/4156319.

Takadate, Y., & Uematsu, Y. (2019). Steady and unsteady aerodynamic forces on a long-span membrane structure. Journal of Wind Engineering and Industrial Aerodynamics, 193, 103946. https://doi.org/10.1016/j.jweia.2019.06.018.

Takahashi, K., & Uematsu, Y. (2018). Collapse process and reinforcement effects of pipe-framed greenhouses under wind loading based on a 3-D analysis. Journal of the Society of Agricultural Structures, 49, 77e85.

Tong, G., Christopher, D. M., & Zhang, G. (2018). New insights on span selection for Chinese solar greenhouses using CFD analyses. Computers and Electronics in Agriculture, 149, 3e15. https://doi.org/10.1016/j.compag.2017.09.031.

Vieira Neto, J. G., & Soriano, J. (2017). Influence of greenhouse's shape in the structural performance. Acta Horticultare, 1170, 855e860. https://doi.org/10.17660/ActaHortic.2017.1170.109.

Yang, Z. Q., Li, Y. X., Xue, X. P., Huang, C. R., & Zhang, B. (2013). Wind loads on single-span plastic greenhouses and solar greenhouses. HortTechnology, 23(5), 622e628. https://doi.org/10.21273/HORTTECH.23.5.622.

Similar Articles

You may also start an advanced similarity search for this article.