Optimized Energy Management Algorithm for Standalone PV System with Battery Storage for Irrigation Purposes

Main Article Content

Tarek Boudjerda
Sofia Belaid Lalouni
Salah Tamalouzt

Abstract

This paper addresses the issue of surplus energy produced during batteries charging in a standalone photovoltaic (PV) system consisting of a PV array, house equipment’s and batteries. The energy management algorithm does not utilize energy excess when the batteries are charged, reducing overall efficiency and robustness. This paper proposes an enhanced energy management algorithm that improves the system efficiency while employing excess energy for irrigation, presenting a valuable solution for agriculture. The energy management unit ensures effective communication among system components, aiming to extend the batteries lifespan and maintain their state of charge within optimal limits of 20% to 90%. Simulations conducted with MATLAB/Simulink over 72 hours under varying irradiance conditions demonstrate the proposed algorithm effectiveness and robustness in protecting batteries from deep discharges and high overcharges and feeding a water pumping system for agriculture purposes besides the house requirements.

Article Details

Section

special

How to Cite

[1]
T. Boudjerda, S. . Belaid Lalouni, and S. . Tamalouzt, “Optimized Energy Management Algorithm for Standalone PV System with Battery Storage for Irrigation Purposes”, J. Ren. Energies, vol. 1, no. 1, pp. 65 – 77, Sep. 2025, doi: 10.54966/jreen.v1i1.1408.

References

Abdessemed R, (2011) Modélisation et simulation des machines électriques, Ellipses, Collection 2011.Pp 63.

Ali Md.F, Sheikh Md. R. I, Akter R, Islam K.M.N, Ferdous A.H.M.I. (2025) Grid-connected hybrid microgrids with PV/wind/battery: Sustainable energy solutions for rural education in Bangladesh. Results in Engineering, 25, 103774. https://doi.org/10.1016/j.rineng.2024.103774.

Bakare M.S, Abdulkarim A, Shuaibu A.N, Muhamad M. M. (2024) Predictive energy control for grid-connected industrial PV-battery systems using GEP-ANFIS. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 9, 100647. https://doi.org/10.1016/j.prime.2024.100647.

Boudjerda T, Belaid S.L, Tamalouzt S. (2024) Fuzzy energy management for a standalone Photovoltaic/ batteries/ load System. 2024 International Conference on Advances in Electrical and Communication Technologies (ICAECOT), Setif, Algeria, 2024, pp. 1-6, doi: 10.1109/ICAECOT62402.2024.10829211.

Canales F.A, Jurasz J.K, Guezgouz M, Beluco A. (2021) Cost-reliability analysis of hybrid pumped- battery storage for solar and wind energy integration in an island community. Sustainable Energy Technologies and Assessments, 44, 101062. https://doi.org/10.1016/j.seta.2021.101062.

Chellakhi A,el Beid S, Abouelmahjoub Y. (2021) An Improved Maximum Power Point Approach for Temperature Variation in PV System Applications. International Journal of Photoenergy, 2021, 1–21. https://doi.org/10.1155/2021/9973204.

Deboucha H, Belaid S.L, Improved incremental conductance maximum power pointtrackingalgorithm using fuzzy logic controller for photovoltaic system’, Rev. Roum. Sci. Tech. Ser. Electrotech. Energ., 2017, 62, (4), pp. 381–387. http://revue.elth.pub.ro/index.php?action=details&id=707.

Djoudi O, Lalouni Belaid S, Tamalouzt S. (2022) A high degree of direct torque control applied to a grid-connected wind energy system based on a DFIG, J. Ren. Energies, vol. 1, no. 1, pp. 81 -, Jun. 2022. https://doi.org/10.54966/jreen.v1i1.1042.

Hayder W, Ogliari E , Dolara A , Abid A ,ben Hamed M, Sbita L. (2020) Improved PSO: A Comparative Study in MPPT Algorithm for PV System Control under Partial Shading Conditions. Energies, 13(8), 2035. https://doi.org/10.3390/en13082035.

Lalouni Belaid. S (2021) Improved IM DTC by using a Fuzzy Switching Table in PV Applications; Elektrotehniški vestnik, 88, 1-2: 26–32.

Liu L, Zhai R, Hu Y. (2023) Performance evaluation of wind-solar-hydrogen system for renewable energy generation and green hydrogen generation and storage: Energy, exergy, economic, and enviro economic. Energy, vol 276, 127386. https://doi.org/10.1016/j.energy.2023.127386.

Mars N, Grouz F, Essounbouli N, Sbita L. Synergetic MPPT controller for photovoltaic system. J Electrical & Electronic Systems 2017;06. http://dx.doi.org/10.4172/2332-0796.1000232.

Net Zero Roadmap. A Global Pathway to Keep the 1.5°C Goal in Reach. 2023 Update. International Energy Agency, https://iea.blob.core.windows.net/assets/8ad619b9-17aa-473d-8a2f-4b90846f5c19/NetZeroRoadmap_AGlobalPathwaytoKeepthe1.5CGoalinReach-2023Update.pdf [accessed 26 March 2025].

Pathy S, Subramani C, Sridhar R, Thamizh Thentra T. M, Padmanaban S. (2019). Nature-Inspired MPPT Algorithms for Partially Shaded PV Systems: A Comparative Study. Energies, 12(8), 1451. https://doi.org/10.3390/en12081451.

Saady I, Majout B, el Kafazi I, Karim M, Bossoufi B, el Ouanjli N, Mahfoud S, Althobaiti A, Alghamdi T.A.H, Alenezi, M. (2025). Improving photovoltaic water pumping system performance with ANN-based direct torque control using real-time simulation. Scientific Reports, 15(1), 4024. https://doi.org/10.1038/s41598-025-88330-8.

Sahri Y, Tamalouzt S, Lalouni Belaid S, Bajaj M, Belkhier Y, Singh A.R, El-Naggar M.F, Kamel S. (2023). Effectiveness analysis of twelve sectors of DTC based on a newly modified switching table implemented on a wind turbine DFIG system under variable wind velocity, Ain Shams Engineering Journal,vol. 14, no. 11, p. 102221. https://doi.org/10.1016/j.asej.2023.102221.

Sahri Y, Tamalouzt S, Lalouni Belaid S, Bajaj M, Ghoneim S.S.M, Zawbaa H.M, Kamel S. (2023). Performance improvement of Hybrid System based DFIG-Wind/PV/Batteries connected to DC and AC grid by applying Intelligent Control. Energy Reports, 9, 2027–2043. https://doi.org/10.1016/j.egyr.2023.01.021.

Salman S, AI X, WU Z. (2018). Design of a P-&-O algorithm based MPPT charge controller for a stand-alone 200W PV system. Protection and Control of Modern Power Systems, 3(1), 25. https://doi.org/10.1186/s41601-018-0099-8.

Shirinda K, Kusakana K, Ostraszewski M. (2024) Combinatorial optimization of a fuzzy logic- controlled grid connected photovoltaic with hybrid energy storage systems using time of use tariff. Journal of Energy Storage, 99, 113251. https://doi.org/10.1016/j.est.2024.113251.

Taissala A, Goron D, Nisso N, Kidmo D K, Ekam P.S. N, Mbakop F.K, Djongyang N. (2022). An Optimized Synergetic Nonlinear Controller (OSNC) based maximum power point tracking for a standalone photovoltaic system using a boost converter. Energy Reports, 8, 107–122. https://doi.org/10.1016/j.egyr.2022.06.094.

Windarko N.A, Nizar Habibi M, Sumantri B, Prasetyono E, Efendi Moh. Z, Taufik. (2021). A New MPPT Algorithm for Photovoltaic Power Generation under Uniform and Partial Shading Conditions. Energies, 14(2), 483. https://doi.org/10.3390/en14020483.

Xu L, Cheng R, & Yang J. (2020). A New MPPT Technique for Fast and Efficient Tracking under Fast Varying Solar Irradiation and Load Resistance. International Journal of Photoenergy, 2020, 1–18. https://doi.org/10.1155/2020/6535372.

Zidane N and Lalouni Belaid S (2024). Energy management for renewable electricity production system including hybrid hydrogen sub-system”, J. Ren. Energies, vol. 1, no. 1, pp. 107 -, May 2024. https://doi.org/10.54966/jreen.v1i1.1198.

Zidane N, Lalouni Belaid S. (2022). A new fuzzy logic solution for energy management of hybrid photovoltaic/battery/hydrogen system. Revue Roumaine des Sciences Techniques — série électrotechnique et énergetique, 67(1), 21-26. https://journal.iem.pub.ro/rrst-ee/article/view/151.

Similar Articles

You may also start an advanced similarity search for this article.