Experimental investigation on energy potentials and chemical composition of palm kernel briquettes as bio-fuel sources in developing countries

Main Article Content

Hakeem O. Omotosho
Sunday O. Oyedepo
Joseph A. Oyebanji
Ojo S.I. Fayomi
Sandip A. Kale

Abstract

This study experimentally investigates the energy potentials and chemical composition of Palm Kernel Shell (PKS) briquettes as possible bio-fuel sources. The Five different samples briquette produced with varying proportion of PKS powder and cassava starch as binder followed by six days sun drying. The heating value of the PKS briquette samples and raw powder was determined using Bomb Calorimeter. Proximate analysis shows that the moisture contents for both the raw sample and PKS briquettes are within the standard moisture content of biomass fuel. Results of the study show that the higher heating value of the PKS briquette samples varies from 20.62MJ/kg to 22.40MJ/kg while that of pure palm kernel powder is 16.55MJ/kg. The ultimate analysis shows that the Carbon content varies from 60.75% - 66.56%; Hydrogen content 5.55% - 5.98%; Nitrogen content 1.12% - 1.55%; Oxygen content 10.50% - 12.88% and Sulphur content 0.01% – 0.8%. The Energy Dispersive X-ray, Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy analysis of the briquette samples show the presence of high percentage of carbon content, fractured, porous matrix, and existence of crystalline structure of cellulose which is adequately good for briquette applications in domestic and industrial area due to enhanced binding and combustion characteristics.

Article Details

Section

special

How to Cite

[1]
H. O. Omotosho, S. O. Oyedepo, J. A. Oyebanji, O. S. Fayomi, and S. A. Kale, “Experimental investigation on energy potentials and chemical composition of palm kernel briquettes as bio-fuel sources in developing countries”, J. Ren. Energies, vol. 1, no. 1, pp. 65 – 81, Jul. 2025, doi: 10.54966/jreen.v1i1.1475.

References

Abdulrasheed, A., Aroke, U. O., and Ibrahim, M. (2015). Compression pressure effect on mechanical & combustion properties of sawdust briquette using Styrofoam adhesive as binder. American Journal of Engineering Research, 4(8), 205-211.

Adeniyi, O. D., Farouk, A., Adeniyi, M. I., Olutoye, M. A., Auta, M., and Olarewaju, S. Y. (2014). Briquetting of palm kernel shell biochar obtained via mild pyrolytic process, LAUTECH Journal Engineering and Technology (LAUJET), Ogbomosho, Nigeria, Vol. 8, No. 2, pp. 30-34.

Aina, R., Sanyaolu, V., Odetunde, S., Avungbeto, M., & Ajose, S. (2019). Biodegradation Enhancement Potential Of Tithonia Diversifolia Manure On Hydrocarbon Impacted Soils. Journal Of Industrial Research And Technology... Jirt Vol, 8(2), 144.

Akuma, O., and Charles, M. (2017). Characteristic analysis of bio-coal briquette (coal and groundnut shell admixtures). International Journal of Scientific Research in Science and Technology, 2(3), 30-38.

Anita, S., Hanifah, T. A., & Kartika, G. F. (2023). Preparation and characterization of activated carbon from the nipa fruit shell irradiated by microwave: effect temperatures and time of carbonization. Materials Today: Proceedings, 87, 390-395.

Bembenek, M., Dmytriv, V., Kowalski, L., Turniak, K., Frocisz, L., Niyazbekova, R., & Krawczyk, J. (2025). Impact of the Roller press briquetting process on the morphological and mechanical properties of apatite ore. Materials, 18(7), 1442.

Bhatia, L., & Sahu, D. K. (2023). SEM & FTIR analysis of rice husk to assess the impact of physiochemical pretreatment. Arch Food Sci Technol, 2, 1-8.

Bonsu, B. O., Takase, M., and Mantey, J., (2020). Preparation of charcoal briquette from palm kernel shells: case study in Ghana. Heliyon, 6(10).

Coates, W. (2000). Using cotton plant residue to produce briquettes. Biomass and Bioenergy, 18(3), 201-208.

Efomah, A.N., and Gbabo, A.(2015). The physical, proximate and ultimate analysis of rice husk briquettes produced from a vibratory block mould briquetting machine. Int. J. Innov. Sci. Eng. Technol. 2, 814–822.

Emodi N. V. , and Boo, K. J. (2015). Sustainable energy development in Nigeria: Current status and policy options. Renewable and Sustainable Energy Reviews, 51, 356-381.

Fan, J., Huang, J., Li, Y., Han, F., Wang, J., Li, X. & Li, S. (2012). Sequential heterotrophy–dilution–photo induction cultivation for efficient microalgal biomass and lipid production. Bio resource technology, 112, 206-211.

Grover, P.D and Mishra, S.K (1996), Biomass Briquetting: Technology and Practices, FAO Regional Wood Energy Development Programme in Asia, Bangkok, Thailand, pp 1 – 48.

Hamid, M. F., Idroas, M. Y., Ishak, M. Z., Zainal Alauddin, Z. A., Miskam, M. A., & Abdullah, M. K. (2016). An experimental study of briquetting process of torrefied rubber seed kernel and palm oil shell. BioMed research international, 2016(1), 1679734.

Jahn, C. E., Mckay, J. K., Mauleon, R., Stephens, J., McNally, K. L., Bush, D. R., ... & Leach, J. E. (2011). Genetic variation in biomass traits among 20 diverse rice varieties. Plant Physiology, 155(1), 157-168.

Mardawati, E, Ramadhan, A.K, Kusnayat, A, Ardiansah, I and Fitriana, H.N (2022), Biobriquette: A Mixture of Palm Kernel Shell and Coconut Shell, An Indonesian Study Case, Eco. Env. & Cons. 28 (3); pp. 1611-1618.

Nandiyanto, A. B. D., & Ragadhita, O. (2019). Risti Ragadhita. How to Read and Interpret FTIR Spectroscope of Organic Material.

Ngangyo Heya, M., Romo Hernández, A. L., Foroughbakhch Pournavab, R., Ibarra Pintor, L. F., Díaz-Jiménez, L., Heya, M. S., ... & Carrillo Parra,(2022). Physicochemical characteristics of biofuel briquettes made from pecan (Carya illinoensis) pericarp wastes of different particle sizes. Molecules, 27(3), 1035.

Ogbuanya, T.C. (2005): Energy and Technology of Home Appliances, Cheston Limited, Enugu, Nigeria, p102.

Onochie, U. P., Obanor, A. L., Aliu, S. A., & Ighodaro, O. O. (2017). Fabrication and performance evaluation of a pelletizer for oil palm residues and other biomass waste materials. Journal of the Nigerian Association of Mathematical Physics, 40, 443-446.

Oyelaran, O. A., Bolaji, B. O., Waheed, M. A., & Adekunle, M. F. (2014). Effects of binding ratios on some densification characteristics of groundnut shell briquettes. Iranica Journal of Energy & Environment, 5(2).

Rahmat, A., Sutiharni, S., Elfina, Y., Yusnaini, Y., Latuponu, H., Minah, F. N. & Mutolib, A. (2023). Characteristics of tamarind seed biochar at different pyrolysis temperatures as waste management strategy: Experiments and bibliometric analysis. Indonesian Journal of Science and Technology, 8(3), 517-538.

Saeed, A. A. H., Yub Harun, N., Bilad, M. R., Afzal, M. T., Parvez, A. M., Roslan, F. A. S., ... & Afolabi, H. K. (2021). Moisture content impact on properties of briquette produced from rice husk waste. Sustainability, 13(6), 3069.

Tembe, E. T., Otache, P. O., & Ekhuemelo, D. O. (2014). Density, Shatter index, and Combustion properties of briquettes produced from groundnut shells, rice husks and saw dust of Daniellia oliveri. Journal of applied biosciences, 82, 7372-7378.

Ugwu, K E; Agbo, K E (2011), Briquetting of Palm Kernel Shell, J. Appl. Sci. Environ. Manage. Vol. 15 (3) 447 – 450

Ukpaka, C. P., Omeluzor, C. U., & Dagde, K. K. (2019). Production of briquettes with heating value using different palm kernel shell. Discovery, 55(281), 147-157.

Veeresh, S. J., and Narayana, J. (2012). Assessment of Agro-Industrial Wastes Proximate, Ultimate, SEM and FTIR analysis for Feasibility of Solid Bio-Fuel Production. Universal Journal of Environmental Research & Technology, 2(6).

Waheed, A., Naqvi, S. R., & Ali, I. (2022). Co-torrefaction progress of biomass residue/waste obtained for high-value bio-solid products. Energies, 15(21), 8297.

Yahya, A. M., Adeleke, A. A., Nzerem, P., Ikubanni, P. P., Ayuba, S., Rasheed, H. A. & Paramasivam, P. (2023). Comprehensive characterization of some selected biomass for bioenergy production. ACS omega, 8(46), 43771-43791.

Yin, C. Y. (2011). Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel, 90(3), 1128-1132.

Similar Articles

You may also start an advanced similarity search for this article.