Non-fullerene OSC: The effects of active and electron transport layers' thickness towards 19.5% efficiency
Main Article Content
Abstract
The effects of the active layer thickness of the organic solar cells based on PM6, D18 and L8-BO materials as well as the effects of electron transport layer thickness are examined using Organic and hybrid Material Nano Simulation (Oghma) software. Several active layer thicknesses are used starting 50nm to 300nm to choose the optimum active layer thickness. For PM6:L8-BO blend, the optimum active layer thickness of is found to be 90nm with a PCE of 13.52%. Whereas, the optimum active layer thickness of D18:L8-BO blend is demonstrated almost similar characteristics with PCE of 13.2% for an optimum active layer thickness of 90nm. Using ternary blend PM6:D18:L8-BO active layer enhances the PCE to 17.5% when the optimum active layer thickness is 80nm. Also, the use of different electron transport layer thickness has resulted in further increase in the PCE to reach as high as 19.5% with the thickness of 20nm.
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
How to Cite
References
Al Hashimi, M.K., AL-Mosawi, B.T. and Kadem, B.Y. (2023). The Effects of Solvent Treated PEDOT: PSS Layer to Enhance Polymer Solar Cells Efficiency. Journal of Nanostructures, 13(1):122-131.
Bishnoi, S., Datt, R., Arya, S., Gupta, S., Gupta, R., Tsoi, W.C., Sharma, S.N., Patole, S.P. and Gupta, V. (2022). Engineered cathode buffer layers for highly efficient organic solar cells: a review. Advanced Materials Interfaces, 9(19):2101693.
Biswas, S., Lee, Y., Choi, H. and Kim, H. (2023). Recent developments in non-fullerene-acceptor-based indoor organic solar cells. Journal of Physics: Materials, 6(4):042002.
Boudia, M.E.A., Wang, Q. and Zhao, C. (2024). Optimization of the Active Layer Thickness for Inverted Ternary Organic Solar Cells Achieves 20% Efficiency with Simulation. Sustainability, 16(14), p.6159.
Chi, D., Huang, S., Yue, S., Liu, K., Lu, S., Wang, Z., Qu, S. and Wang, Z. (2017). Ultra-thin ZnO film as an electron transport layer for realizing the high efficiency of organic solar cells. RSC advances, 7(24):14694-14700.
Dong, S., Zhang, K., Jia, T., Zhong, W., Wang, X., Huang, F. and Cao, Y. (2019). Suppressing the excessive aggregation of nonfullerene acceptor in blade-coated active layer by using n-type polymer additive to achieve large-area printed organic solar cells with efficiency over 15%. EcoMat, 1(1) : 12006.
El-Nahass, M.M. and Abd El-Rahman, K.F. (2007). Investigation of electrical conductivity in Schottky-barrier devices based on nickel phthalocyanine thin films. Journal of alloys and compounds, 430(1-2):194-199.
Gao, Y., MacKenzie, R.C.I., Liu, Y., Xu, B., van Loosdrecht, P. H. M. and Tian, W. (2015), Engineering Ultra Long Charge Carrier Lifetimes in Organic Electronic Devices at Room Temperature, Adv. Mater. Interfaces, 2:1400555.
Hassan, A., Kadem, B. and Cranton, W. (2017). Organic solar cells: Study of combined effects of active layer nanostructure and electron and hole transport layers. Thin Solid Films, 636:760-764.
He, C., Pan, Y., Ouyang, Y., Shen, Q., Gao, Y., Yan, K., Fang, J., Chen, Y., Ma, C.Q., Min, J. and Zhang, C. (2022). Manipulating the D: A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy & Environmental Science, 15(6):2537-2544.
Heeger, A.J. (2014). 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Advanced materials, 26(1):10-28.
Hofinger, J., Weber, S., Mayr, F., Jodlbauer, A., Reinfelds, M., Rath, T., Trimmel, G. and Scharber, M.C. (2022). Wide-bandgap organic solar cells with a novel perylene-based non-fullerene acceptor enabling open-circuit voltages beyond 1.4 V. Journal of Materials Chemistry A, 10(6):2888-2906.
Islam, M.S. (2021). Investigation of the Current of P3HT: PCBM-Based Organic Solar Cell Extracting the Spatial Recombination Coefficient of the Active Layer. IEEE Access, 9:130502-130518.
Kadem, B., Cranton, W. and Hassan, A. (2015). Metal salt modified PEDOT: PSS as anode buffer layer and its effect on power conversion efficiency of organic solar cells. Organic Electronics, 24:73-79.
Kadem, B., Hassan, A. and Cranton, W. (2016). Efficient P3HT: PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. Journal of Materials Science: Materials in Electronics, 27:7038-7048.
Kadem, B., Kaya, E.N., Hassan, A., Durmus, M. and Basova, T. (2019). Composite materials of P3HT: PCBM with pyrene substituted zinc (II) phthalocyanines: Characterisation and application in organic solar cells. Solar Energy, 1891-7.
Kadem, B.Y., Kadhim, R.G. and Banimuslem, H. (2018). Efficient P3HT: SWCNTs hybrids as hole transport layer in P3HT: PCBM organic solar cells. Journal of Materials Science: Materials in Electronics, 29(11):9418-9426.
Lee, H.W., Biswas, S., Lee, Y. and Kim, H. (2023). Over 23% Efficiency under Indoor Light in Gallium-Doped Zinc Oxide Electron Transport Layer-based Inverted Organic Solar Cell to Power IoT Devices. IEEE Internet of Things Journal. 10(8): 15923 – 15930.
Lee, J.U., Cirpan, A., Emrick, T., Russell, T.P., Jo, W.H. (2009). Synthesis and photophysical property of well-defined donor–acceptor diblock copolymer based on regioregular poly(3-hexylthiophene) and fullerene, J. Mater. Chem. 19:1483–1489.
Lee, M.H. (2020). Performance and matching band structure analysis of tandem organic solar cells using machine learning approaches. Energy Technology, 8(3):1900974.
Li, G., Shrotriya, V., Yao, Y. and Yang, Y. (2005). Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly (3-hexylthiophene). Journal of Applied Physics, 98(4):043704.
Liu, Z. (2021). Enhancing the photovoltaic performance with two similar structure polymers as donors by broadening the absorption spectrum and optimizing the molecular arrangement. Organic Electronics, 93:106153.
MacKenzie, R.C.I., Balderrama, V. S., Schmeisser, S., Stoof, R., Greedy, S., Pallarès, J., Marsal, L. F., Chanaewa, A., von Hauff, E. (2016), Loss mechanisms in high efficiency polymer solar cells, Advanced Energy Materials, 6(4):1501742.
Nam, Y.M., Huh, J. and Jo, W.H. (2010). Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Solar Energy Materials and Solar Cells, 94(6):1118-1124.
Nithya, K.S. and Sudheer, K.S. (2020). Numerical modelling of non-fullerene organic solar cell with high dielectric constant ITIC-OE acceptor. Journal of Physics Communications, 4(2):025012.
Sharma, V. V., Landep, A., Lee, S. Y., Park, S. J., Kim, Y. H., & Kim, G. H. (2023). Recent advances in polymeric and small molecule donor materials for Y6 based organic solar cells. Next Energy, 2:100086.
Sievers, D.W., Shrotriya, V., Yang, Y. (2006). Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells, J. Appl. Phys. 100:114509-1–114509-7.
Tokmoldin, N., Vollbrecht, J., Hosseini, S.M., Sun, B., Perdigon-Toro, L., Woo, H.Y., Zou, Y., Neher, D. and Shoaee, S., (2021). Explaining the fill-factor and photocurrent losses of nonfullerene acceptor-based solar cells by probing the long-range charge carrier diffusion and drift lengths. Advanced Energy Materials, 11(22):2100804.
Vilkman, M., Väisänen, K.L., Apilo, P., Po, R., Välimäki, M., Ylikunnari, M., Bernardi, A., Pernu, T., Corso, G., Seitsonen, J. and Heinilehto, S., (2018). Effect of the electron transport layer on the interfacial energy barriers and lifetime of R2R printed organic solar cell modules. ACS Applied Energy Materials, 1(11):5977-5985.
Xue, R., Zhang, J., Li, Y. and Li, Y., (2018), Organic solar cell materials toward commercialization. Small, 14(41):1801793.
Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H.L., Lau, T.K., Lu, X., Zhu, C., Peng, H., Johnson, P.A., Leclerc, M., Yong Cao, Ulanski, J., Li, Y., Zou. Y. (2019). Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core, Joule, 3(4):1140-1151.
Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H.L., Lau, T.K., Lu, X., Zhu, C., Peng, H., Johnson, P.A. and Leclerc, M. (2019). Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 3(4):1140-1151.
Zang, Y., Xin, Q., Zhao, J. and Lin, J. (2018). Effect of active layer thickness on the performance of polymer solar cells based on a highly efficient donor material of PTB7-Th. The Journal of Physical Chemistry C, 122(29):16532-16539.
Zheng, Z., Wang, J., Bi, P., Ren, J., Wang, Y., Yang, Y., Liu, X., Zhang, S. and Hou, J. (2022). Tandem organic solar cell with 20.2% efficiency. Joule, 6(1):171-184.
Zhu, L., Zhang, M., Xu, J., Li, C., Yan, J., Zhou, G., Zhong, W., Hao, T., Song, J., Xue, X. and Zhou, Z. (2022). Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials, 21(6):656-663.