Electromagnetic shielding properties of polymer blended with graphene sheets and iron oxide particles
Main Article Content
Abstract
This work introduces an innovative polymer composite for electromagnetic interference (EMI) shielding, combining recycled graphene sheets and iron oxide (Fe2O3) particles within a PVC matrix. The goal was to develop a lightweight and effective material to attenuate electromagnetic disturbances, particularly in the band frequency range (10-15 GHz). An ultra-thin (2 mm) composite containing only 10% recycled graphene, obtained from spent batteries, achieved electromagnetic shielding effectiveness (SE) of 38.5 dB in this frequency band. This result demonstrates a significant synergy between graphene and Fe2O3, where the addition of Fe2O3 enhanced graphene dispersion via ligand exchange, thereby lowering the percolation threshold and increasing wave absorption. These key findings highlight the potential of this composite for EMI shielding applications in high-stress environments. Future research perspectives include optimizing the graphene/Fe2O3 composition to further enhance shielding effectiveness, exploring the impact of different Fe2O3 morphologies, and evaluating the environmental stability and durability of the composite under various operational conditions. Furthermore, investigating the integration of this composite into specific electronic devices, such as 5G communication systems and wearable devices, will validate its practical application and commercial potential.
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
How to Cite
References
Abdelal, N., Dib, N., Young, D., &Slanker, A. (2022). Electromagnetic interference shielding and dielectric properties of graphene nanoplatelets/epoxy composites in the x-band frequency range. Journal of Materials Science, 57(29), 13928–13944.
Ahmad, A. Fahad., Ab Aziz, S., Abbas, Z., Obaiys, S. J., Khamis, A. M., Hussain, I. R., & Zaid, M. H. M. (2018). Preparation of a chemically reduced graphene oxide reinforced epoxy resin polymer as a composite for electromagnetic interference shielding and microwave-absorbing applications. Polymers, 10(11), 1180.
Ahmad, H. S., Hussain, T., Nawab, Y., & Awais, H. (2023). Graphene and Fe2O3 filled composites for mitigation of electromagnetic pollution and protection of electronic appliances. Composites Science and Technology, 240, 110097. https://doi.org/10.1016/j.compscitech.2023.110097.
Al-Ghamdi, A. A., Al-Hartomy, O. A., Al-Solamy, F. R., Dishovsky, N. T., Malinova, P., Atanasov, N. T., & Atanasova, G. L. (2016). Correlation between electrical conductivity and microwave shielding effectiveness of natural rubber-based composites, containing different hybrid fillers obtained by impregnation technology. Materials Sciences and Applications, 07(09), 496–509. https://doi.org/10.4236/msa.2016.79043.
Al-Ghamdi, A.A. & El-Tantawy, F. (2010). New electromagnetic wave shielding effectiveness at microwave frequency of polyvinyl chloride reinforced Graphite/Copper nanoparticles. Composites. Part A: Applied Science and Manufacturing, 41, 1693-1701. http://dx.doi.org/10.1016/j.compositesa.2010.08.006.
Al-Gharram, M. & AlZoubi, T. (2025). Exploring dual optical responses of polyaniline-fe2o3 nanocomposites for advanced optoelectronic and supercapacitor applications. Ceramics International. https://doi.org/10.1016/j.ceramint.2025.03.173.
Al-Saleh, M. H., Saadeh, W. H., & Sundararaj, U. (2013). EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study. Carbon, 60, 146–156.
Arjmand, M., Apperley, T., Okoniewski, M., & Sundararaj, U. (2012). Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon, 50(14), 5126–5134. https://doi.org/10.1016/j.carbon.2012.06.053.
Ayub, S., Guan, B. H., Ahmad, F., &Nisa, Z. U. (2021). A shear mixing approach in polymer composite formation. 2021 Third International Sustainability and Resilience Conference: Climate Change, 205–210. doi: 10.1109/IEEECONF53624.2021.9668079.
Bakli, H., Moualhi, M., & Makhlouf, M. (2022). High-sensitivity electrical properties measurement of graphene-based composites using interferometric near-field microwave technique. Measurement Science and Technology, 33(4), 045012.
Bayat, M., Yang, H., Ko, F. K., Michelson, D., &Mei, A. (2014). Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite. Polymer, 55(3), 936–943.
Beaulieu, E. (2014). From voter ID to party ID: How political parties affect perceptions of election fraud in the U.S. Electoral Studies, 35, 24–32. https://doi.org/10.1016/j.electstud.2014.03.003.
Bhattacharjee, Y., Biswas, S., & Bose, S. (2020). Thermoplastic polymer composites for EMI shielding applications. Materials for Potential EMI Shielding Applications, 73–99.
Bouriche, S., Makhlouf, M., Kadari, M., Bakli, H., Hamoumi, Y., Benaicha, B., Taibi, A., &Benmaamar, Z. (2022). Smart membrane absorbing electromagnetic waves based on polyvinyl chloride/graphene composites. Materials Research Express, 9(4), 045703.
Chauhan, D. S. (2023). Chapter 7 Graphene (Gr)/graphene oxide (GO) and functionalized Gr/GO in corrosion prevention. Corrosion Prevention Nanoscience, 99–120. DOI:10.1515/9783111071756-007.
Chen, C., Bao, S., Zhang, B., Chen, Y., Chen, W., & Wang, C. (2019). Coupling Fe@Fe3O4 nanoparticles with multiple-walled carbon nanotubes with width band electromagnetic absorption performance. Applied Surface Science, 467–468, 836–843.
Chen, K.-Y., Gupta, S., & Tai, N.-H. (2021). Reduced graphene oxide/Fe2O3 hollow microspheres coated sponges for flexible electromagnetic interference shielding composites. Composites Communications, 23, 100572. https://doi.org/10.1016/j.coco.2020.100572.
Chen, P., Zhang, N., Chen, W., & Wang, Y. (2021). Rhombic Fe2O3 lumps doping hollow ZnFe2O4 spheres through oxidative decomposition process implanted into graphene conductive network with superior electromagnetic wave absorption properties. Ceramics International, 47(5), 6453–6462. https://doi.org/10.1016/j.ceramint.2020.10.228.
Chhowalla, M., Ferrari, A. C., Robertson, J., &Amaratunga, G. A. J. (2000). Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy. Applied Physics Letters, 76(11), 1419–1421.
Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157–175. https://doi.org/10.1016/s1364-0321(99)00011-8.
Dong, Q., Kumada, N., Yonesaki, Y., Takei, T., Kinomura, N., & Wang, D. (2010). Template-free hydrothermal synthesis of hollow hematite microspheres. Journal of Materials Science, 45(20), 5685–5691.
Fleuriault, C., Guan, X., & Grogan, J. (2019). Extraction and Recycling of Battery Materials. JOM, 71(12), 4445–4446. https://doi.org/10.1007/s11837-019-03888-9.
Fu, M., Jiao, Q., & Zhao, Y. (2013). Preparation of NiFe2O4 nanorod–graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties. Journal of Materials Chemistry A, 1(18), 5577.
Gadhafi, R., &Sanduleanu, M. (2016). A modified square patch antenna with improved bandwidth performance for WiFi applications. 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), 1–4.
García, E., Andújar, A., &Anguera, J. (2024). Overview of reconfigurable antenna systems for IoT devices. Electronics, 13(20), 3988.
Guo, J., Zhan, R., & Qiu, J. (2020). Electromagnetic wave absorbing performances with Fe2O3 nanotubes/reduced graphene oxide composite sponge. Journal of Materials Science: Materials in Electronics, 31(14), 11366-11378. https://doi.org/10.1007/s10854-020-03685-0.
He, Z., &Gu, S. (2024). Sustainable development of a low-carbon supply chain economy based on the internet of things and environmental responsibility. International Journal of Sustainable Development, 1(1).
Huang, C., & Dong, Y. (2023). Multifunctional composite foam with high strength and sound-absorbing based on step assembly strategy for high performance electromagnetic shielding. Polymer Composites, 44(8), 4993-5002. https://doi.org/10.1002/pc.27465.
Hut, E. (2019). EMC-Aspecten van PV-Installaties. Agentschap Telecom. EMC Aspects of PV Installation. Available online: https://fhi.nl/app/uploads/sites/42/2019/11/Agentschap-Telecom.
Jiang, Q., Liao, X., Li, J., Chen, J., Wang, G., Yi, J., Yang, Q., & Li, G. (2019). Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic. Composites Part A: Applied Science and Manufacturing, 123, 310–319.
Kane, M. M., Taylor, N., & Månsson, D. (2024). Electromagnetic interference from solar photovoltaic systems: A Review. Electronics, 14(1), 31. https://doi.org/10.3390/electronics14010031.
Kashi, S., Gupta, R. K., Baum, T., Kao, N., & Bhattacharya, S. N. (2016). Dielectric properties and electromagnetic interference shielding effectiveness of graphene-based biodegradable nanocomposites. Materials & Design, 109, 68–78. https://doi.org/10.1016/j.matdes.2016.07.062.
Kaur, A., Ishpal, & Dhawan, S. K. (2012). Tuning of EMI shielding properties of polypyrrole nanoparticles with surfactant concentration. Synthetic Metals, 162(15–16), 1471–1477.
Kausar, A., Ahmad, I., & Lam, T. D. (2023). Graphene footprints in energy storage systems—An overview. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 6, 100361.
Kaushal, A., Dhawan, S. K., & Singh, V. (2019). Determination of crystallite size, number of graphene layers and defect density of graphene oxide (GO) and reduced graphene oxide (RGO). DAE solid state physics symposium 2018. Hisar, Haryana, India. AIP Conf. Proc. 2115, 030106. https://doi.org/10.1063/1.5112945.
Kunkel, G. M. (2019). Penetration of electromagnetic wave through shielding barrier. Shielding of Electromagnetic Waves, 13–18.
Larsson, K., & Binnemans, K. (2014). Selective extraction of metals using ionic liquids for nickel metal hydride battery recycling. Green Chem., 16(10), 4595–4603.
Lee, S. H. (2014). Electromagnetic Properties of Composite Materials for the Electrical Power Device. Journal of Nanoscience and Nanotechnology, 14(7), 5455–5458.
Lee, S.-M., Kim, J.-H., &Ahn, J.-H. (2015). Graphene as a flexible electronic material: mechanical limitations by defect formation and efforts to overcome. Materials Today, 18(6), 336–344.
Li, Z., Li, J., & Shen, X. (2024). Multifunctional magnetic graphene/nano cellulose hybrid aerogel with excellent electromagnetic wave absorption and thermal insulating performances. Diamond and Related Materials, 149, 111573.
Liang, J., Wang, Y., Huang, Y., Ma, Y., Liu, Z., Cai, J., Zhang, C., Gao, H., & Chen, Y. (2009). Electromagnetic interference shielding of graphene/epoxy composites. Carbon, 47(3), 922–925.
Lin, S., Ju, S., Zhang, J., Shi, G., He, Y., & Jiang, D. (2019). Ultrathin flexible graphene films with high thermal conductivity and excellent EMI shielding performance using large-sized graphene oxide flakes. RSC Advances, 9(3), 1419–1427.
Liu, Q., He, X., Yi, C., Sun, D., Chen, J., Wang, D., Liu, K., & Li, M. (2020). Fabrication of ultra-light nickel/graphene composite foam with 3D interpenetrating network for high-performance electromagnetic interference shielding. Composites Part B: Engineering, 182, 107614.
Liu, Z., Bai, G., Huang, Y., Ma, Y., Du, F., Li, F., Guo, T., & Chen, Y. (2007). Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon, 45(4), 821–827.
Lu, W., & Guan, H. (2024). Multi-functional electromagnetic interference (EMI) shielding materials. Electromagnetic Wave Absorption and Shielding Materials, 267–315.
Lucchese, M. M., Stavale, F., Ferreira, E. H. M., Vilani, C., Moutinho, M. V. O., Capaz, R. B., Achete, C. A., &Jorio, A. (2010). Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon, 48(5), 1592–1597.
Lv, H., Liang, X., Cheng, Y., Zhang, H., Tang, D., Zhang, B., Ji, G., & Du, Y. (2015). Coin-like a-Fe2O3@CoFe2O4 Core–Shell composites with excellent electromagnetic absorption performance. ACS Applied Materials & Interfaces, 7(8), 4744–4750.
Ma, T., Xu, Y., Sun, L., Liu, X., & Zhang, J. (2018). Synthesis of graphene/a-Fe2O3 nanospindles by hydrothermal assembly and their lithium storage performance. Ceramics International, 44(1), 364–368.
Marion, B., & Smith, B. (2017). Photovoltaic system derived data for determining the solar resource and for modeling the performance of other photovoltaic systems. Solar Energy, 147, 349–357. https://doi.org/10.1016/j.solener.2017.03.043.
Mazzoli, A., Corinaldesi, V., Donnini, J., Di Perna, C., Micheli, D., Vricella, A., Pastore, R., Bastianelli, L., Moglie, F., & Mariani Primiani, V. (2018). Effect of graphene oxide and metallic fibers on the electromagnetic shielding effect of engineered cementitious composites. Journal of Building Engineering, 18, 33–39.
Miller, A. B. (2022). Public health implications of exposure to wireless communication electromagnetic fields. Electromagnetic Fields of Wireless Communications: Biological and Health Effects, 79–96.
Modanwal, R. P., &Kundalwal, S. I. (2024). Design and development of low-weight and highstrength electromagnetic shielding nanocomposite in a microwave frequency range. Polymer Composites. Portico.
Mueller, R. S. (1988). Oblique transmission of electromagnetic waves through a magnetized ferrite slab. Radio Science, 23(2), 183–192.
Ortlek, H. G., Saracoglu, O. G., Saritas, O., &Bilgin, S. (2012). Electromagnetic shielding characteristics of woven fabrics made of hybrid yarns containing metal wire. Fibers and Polymers, 13(1), 63–67.
Ott, H.W. (2009) Electromagnetic Compatibility Engineering. John Wiley & Sons Inc., Hoboken. http://dx.doi.org/10.1002/9780470508510.
Paul, C.R. (2006) Introduction to Electromagnetic Compatibility. 2nd Edition, John Wiley & Sons, Inc., Hoboken.
Rahaman, M. (2023). Superior mechanical, electrical, dielectric, and EMI shielding properties of ethylene propylene diene monomer (EPDM) based carbon black composites. RSC Advances, 13(36), 25443–25458.
Rajavel, K., Luo, S., Wan, Y., Yu, X., Hu, Y., Zhu, P., Sun, R., & Wong, C. (2020). 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation. Composites Part A: Applied Science and Manufacturing, 129, 105693.
Rubeziene, V., &Varnaite-Zuravliova, S. (2020). EMI shielding textile materials. Materials for Potential EMI Shielding Applications, 357–378.
Shetty, H. D., Ashok Reddy, G. V., Ramasamy, V., Kaliprasad, C. S., Daruka Prasad, B., Yogananda, H. S., Naik, R., Prasad, V., Koyyada, G., & Anil Kumar, Y. (2023). Electrical conductivity and electromagnetic interference shielding effectiveness of elastomer composites: Comparative study with various filler systems. Inorganic Chemistry Communications, 151, 110578.
Shulga, Y. M., Martynenko, V. M., Muradyan, V. E., Baskakov, S. A., Smirnov, V. A., & Gutsev, G. L. (2010). Gaseous products of thermo- and photo-reduction of graphite oxide. Chemical Physics Letters, 498(4–6), 287–291.
Singh, G., Cooke, T., Johns, J., Vega, L., Valdez, A., Bull, G. (2023). Telephone interference from solar PV switching. IEEE Open Access J. Power Energy, 10, 373–384.
Song, P., Cai, Z., Li, J., He, M., Qiu, H., Ren, F., Zhang, Y., Guo, H., & Ren, P. (2025). Construction of rGO-MXene@FeNi/epoxy composites with regular honeycomb structures for high-efficiency electromagnetic interference shielding. Journal of Materials Science & Technology, 217, 311–320.
Song, W.-L., Guan, X.-T., Fan, L.-Z., Cao, W.-Q., Zhao, Q.-L., Wang, C.-Y., & Cao, M.-S. (2015). Tuning broadband microwave absorption via highly conductive Fe3O4/graphene heterostructural nanofillers. Materials Research Bulletin, 72, 316–323.
Suma, J. G., Patil, Y. N., Megalamani, M. B., Rajappa, S. K., &Nandibewoor, S. T. (2025). Sensitive electrochemical analysis of uricosuric drug sulfinpyrazone using a graphene-based sensor: A first voltammetric approach. Next Materials, 7, 100346.
Sun, G., Dong, B., Cao, M., Wei, B., & Hu, C. (2011). Hierarchical Dendrite-Like Magnetic Materials of Fe3O4, y-Fe2O3, and Fe with High Performance of Microwave Absorption. Chemistry of Materials, 23(6), 1587–1593.
Tiwari, S. K., Sahoo, S., Wang, N., &Huczko, A. (2020). Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, 5(1), 10–29.
Tong, G., Wu, W., Guan, J., Qian, H., Yuan, J., & Li, W. (2011). Synthesis and characterization of nanosized urchin-like a-Fe2O3 and Fe3O4: Microwave electromagnetic and absorbing properties. Journal of Alloys and Compounds, 509(11), 4320–4326.
Tran Van, K., Nguyen Quang, V., Le Van, T., & Mai Thanh, P. (2019). Effect of temperature on the structure and properties of Fe2O3/graphene nanocomposites synthesized by hydrothermal method. Vietnam Journal of Science and Technology, 57(3A), 150.
Wan, Y.-J., Li, X.-M., Zhu, P.-L., Sun, R., Wong, C.-P., & Liao, W.-H. (2020). Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 130, 105764.
Wang, L., Bai, X., & Wang, M. (2017). Facile preparation, characterization and highly effective microwave absorption performance of porous a-Fe2O3 nanorod–graphene composites. Journal of Materials Science: Materials in Electronics, 29(4), 3381–3390.
Wang, L., Qiu, H., Liang, C., Song, P., Han, Y., Han, Y., Gu, J., Kong, J., Pan, D., &Guo, Z. (2019). Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon, 141, 506–514.
Wang, L., Wei, X., Wang, G., Zhao, S., Cui, J., Gao, A., Zhang, G., & Yan, Y. (2020). A facile and industrially feasible one-pot approach to prepare graphene-decorated PVC particles and their application in multifunctional PVC/graphene composites with segregated structure. Composites Part B: Engineering, 185, 107775.
Wang, Q., Tang, J., Xiao, S., Wang, M., & Shi, S. Q. (2020). Natural fiber-based composites with high hydrophobic, magnetic, and EMI shielding properties via iron oxide in situ synthesis and copper film deposition. BioResources, 15(4), 8384–8402.
Wang, Y., Wu, X., Zhang, W., Luo, C., Li, J., & Wang, Q. (2017). 3D heterostructure of graphene@Fe 3O4 @WO 3 @PANI: Preparation and excellent microwave absorption performance. Synthetic Metals, 231, 7–14.
Wang, Y., Zhu, H., Chen, Y., Wu, X., Zhang, W., Luo, C., & Li, J. (2017). Design of hollow ZnFe2O4 microspheres@graphene decorated with TiO 2 nanosheets as a high-performance low frequency absorber. Materials Chemistry and Physics, 202, 184–189.
Williams, T., & Armstrong, K. (1999). Interference sources, victims and coupling. EMC for Systems and Installations, 67–100. https://doi.org/10.1016/b978-075064167-8/50004-8.
Wu, H., Wu, G., & Wang, L. (2015). Peculiar porous a-Fe2O3, y-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technology, 269, 443–451.
Xu, Y., Yang, S., Zhang, G., Sun, Y., Gao, D., & Sun, Y. (2011). Uniform hematite a-Fe2O3 nanoparticles: Morphology, size-controlled hydrothermal synthesis and formation mechanism. Materials Letters, 65(12), 1911–1914.
Yan, D., Pang, H., Li, B., Vajtai, R., Xu, L., Ren, P., Wang, J., & Li, Z. (2014). Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Advanced Functional Materials, 25(4), 559-566. Portico.
Yang, X., Fan, S., Li, Y., Guo, Y., Li, Y., Ruan, K., Zhang, S., Zhang, J., Kong, J., &Gu, J. (2020). Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Composites Part A: Applied Science and Manufacturing, 128, 105670.
Yang, Z., Li, M., Zhang, Y., Lyu, X., & Hu, D. (2019). Hierarchical formation mechanism of anisotropic magnetite microflakes and their superior microwave attenuation properties. Journal of Alloys and Compounds, 781, 321–329.
Yuan, Y., Jiang, W., Wang, Y., Shen, P., Li, F., Li, P., Zhao, F., & Gao, H. (2014). Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Applied Surface Science, 303, 354–359.
Zhang, N., Huang, Y., & Wang, M. (2018). Synthesis of graphene/thorns-like polyaniline/a-Fe2O3@SiO2 nanocomposites for lightweight and highly efficient electromagnetic wave absorber. Journal of Colloid and Interface Science, 530, 212–222. https://doi.org/10.1016/j.jcis.2018.06.088.
Zheng, R., Yang, D., Chen, Y., Bian, Z., & Li, H. (2023). Fe2O3/TiO2/reduced graphene oxide-driven recycled visible-photocatalytic Fenton reactions to mineralize organic pollutants in a wide pH range. Journal of Environmental Sciences, 134, 11–20.